

Modelling the potential impact of pneumococcal vaccination strategies in humanitarian crises

Kevin van Zandvoort, Mohamed Bobe, Abdirahman I Hassan, Mohammed Ismail, Mohammed Saed, Emma Diggle, Catherine McGowan, Rosalind Eggo, Rachael Cummings, Casey Pell, Edward Kim Mulholland, Catherine Satzke, Francesco Checchi, Stefan Flasche

Streptococcus pneumoniae (the pneumococcus)

- Common bacteria residing in the human nasopharynx
- Transmitted from person-to-person following close contact
- Occasionally causes disease:
 - Tonsilitis
 - Otitis media
 - Pneumonia
 - Meningitis
 - Sepsis
- Disproportionally affects young children and those with weakened immune systems
- Over 100 known serotypes
- Caused 11% of all <5y mortality in 2015

Pneumococcal burden in humanitarian crises

- Largely unknown
- Increased disease and mortality rates
 - All-cause mortality is frequently ≥2 times pre-crisis baseline
 - Respiratory infections leading cause of mortality in <5y
 - Presence of risk factors relevant for pneumococcal spread

Risk factor	Carriage	Disease	Death
Acute malnutrition	++	+++	+++
Measles outbreaks and other viral RTIs	++	++	++
Overcrowding and altered social contact patterns	+++		
Disrupted routine PCV use	+	+++	
Low access to curative care	+	+	+++
Smoke inhalation		+	
Inadequate water and sanitation	++	+	

Bellos et al (2010); Van Zandvoort et al (2019)

Intervention

- Pneumococcal Conjugate Vaccines (PCV)
 - Safe and effective
 - Protects against transmission and disease of the most invasive serotypes
 - Introduced in most EPI programmes
 - Expensive, but mitigated by Humanitarian Mechanism (+Pneumosil)
 - Rarely used in crisis settings
- Little guidance on the use of PCVs in humanitarian settings
 - WHO recommendation on PCV in crises
 - Use in children <1 year
 - Consider in children <5 years
 - Routine immunization often not feasible

World Health Organization (2019)

ESPICC study (2018-2023)

Evaluating Strategies for Pneumococcal Immunization Campaigns in Crises (ESPICC)

- Aim: to identify optimal vaccination strategies for populations affected by humanitarian crises
- Method
 - Ideally cluster Randomized Controlled Trial but not feasible
 - Alternative study design:
 - 1. Primary data collection of key model parameters
 - Contact and carriage patterns
 - Conducted a cross-sectional survey in Somaliland camp for internally displaced people (IDP) in 2019
 - 2. Mathematical modelling of different vaccination strategies
 - 3. Follow-up intervention study
 - EEPICC study

Primary data collection

- Digaale IDP camp, Hargeisa, Somaliland
- Save the Children International
- Somaliland Ministry of Health Development

Digaale IDP camp

- Permanent camp, established in 2014
- Population displaced by drought
- 900 shelters
- ~500 households / ~2000 people
- Overcrowding median household size 4 (2-6) people
- Young population median age 15 (7-34) years
- High crude death rates
- High migration rates
- Malnutrition 20% <5y wasted, 30% stunted

REPUBLIC OF SOMALILAND MINISTRY OF HEALTH DEVELOPMENT

Van Zandvoort et al (2021)

Social contact patterns

Who contacts whom?

- All age groups, ~9-11 contacts per • day
- 78% of contacts physical •
- Most contacts at home •
- Very few contacts at school or • work
- Very few contacts outside IDP • camp

Most contacts made by/with children

High levels of intergenerational mixing

Van Zandvoort et al (2021)

CHOOL

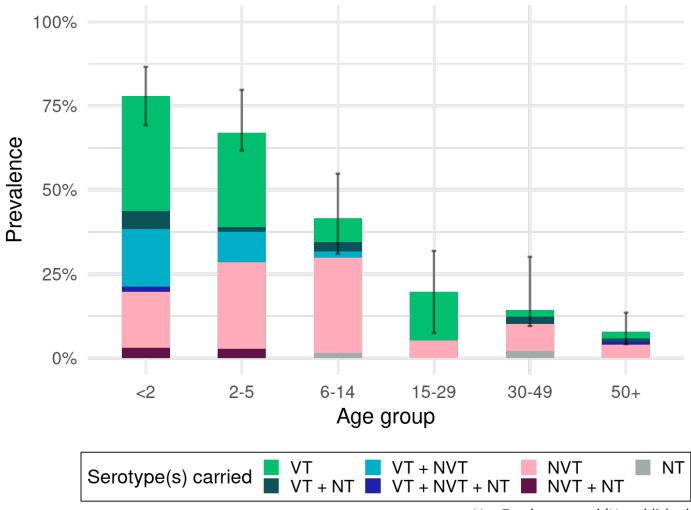
30^{.29}

5.0

Age contactor

40.40

7.5



10.0

 $c_{O_{\times}}$

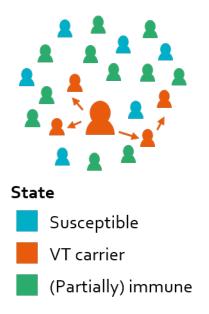
Pneumococcal carriage prevalence

- $N_{swabs} = 454$
- 45%, tested positive for pneumococcus
- ~50% are VT serotypes
- 75% in children <5 years
- Similar to Kenya, Uganda, Malawi
- Lower than the Gambia

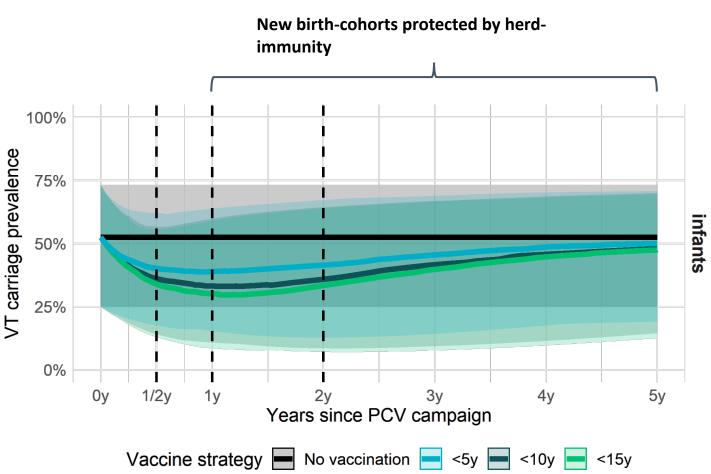
Van Zandvoort et al (Unpublished data)

Modelling PCV strategies

- Transmission model simulates pneumococcal transmission
- Simulate a single PCV campaign, without routine immunization
- Aim to **achieve high level of herd-immunity** (against vaccine-targeted (VT) serotypes)
- High vaccine coverage (assume 85%)
 - Modelled PNEUMOSIL
 - Direct protection to those vaccinated
 - Indirect protection to those unvaccinated: herd immunity
- Compare a single PCV campaign targeting children:
 - <5 y
 - <10 y
 - <15 y



1. Without herd immunity


2. With herd immunity

Carriage prevalence in infants

- Able to establish partial herd immunity
- Peak impact at ~1 year after campaign
- Larger impact with wider age targeting
- Faster waning with <5y campaign
- Will return to baseline in absence of additional vaccination

Van Zandvoort et al (Unpublished data)

6m **1**y 2у **5**y 60% 53 49 37 all infants 31 28 21 0% <10y <5y <15y Strategy Vaccine strategy No vaccination <15y <5v <10y Van Zandvoort et al (Unpublished data) LONDON SCHOOL of murdoch **REPUBLIC OF SOL** ldren's HYGIENE Save the Children *NEDECINS* research MINISTRY OF HEALTH DEVELOPMENT

institute

&TROPICAL

MEDICINE

ANS FRONTIERES

Cumulative impact on invasive pneumococcal disease (IPD) cases

Modelling PCV campaigns (other settings)

Differ in:

- Demographic characteristics -
- Mixing with (unvaccinated) host population -
- Migration rates -
- Malnutrition rates

Population	Impact IPD (<u>infants</u> ; 2y post campaign) – higher is better		Impact IPD (<u>all ages</u> ; 2y post campaign) – higher is better		Efficiency (all ages; 2y post campaign) – lower is better	
	<5 campaign	<15 campaign (ratio)	<5 campaign	<15 campaign (ratio)	<5 campaign	<15 campaign (ratio)
Digaale, Somaliland, 2019	18%	28% (1.6)	34%	51% (1.5)	950	1,768 (1.8)
Bentiu PoC, South Sudan, 2015	15%	22% (1.5)	29%	44% (1.5)	1,067	1,682 (1.6)
Bambari, Central African Republic, 2019	15%	30% (2.0)	32%	52% (1.6)	827	1,213 (1.5)
Maiduguri, Nigeria, 2016	14%	20% (1.4)	26%	39% (1.5)	1,404	2,320 (1.7)
Maiduguri, Nigeria, 2019	12%	16% (1.3)	27%	40% (1.5)	1,402	2,273 (1.6)
Overall	~15%	~15 to 30%	~30%	~40 to 50%	~900 to 1,400	~1,200 to 2,400

Conclusions

- PCV campaigns can be effective to prevent pneumococcal disease in populations affected by humanitarian crises (where routine immunization is not feasible)
- Unvaccinated birth cohorts can be partially protected by high vaccine coverage in older children
- Campaigns in <5y achieve good impact in all scenarios but campaign should be adapted to local epidemiology
- PCV campaigns in crises are efficient use of PCV, if routine use is impossible
 - Multi-antigen campaigns may further improve efficiency, e.g. by combining PCV vaccination with Measles vaccination

Thank you!

London School of Hygiene and Tropical Medicine: Stefan Flasche, Francesco Checchi, Kevin van Zandvoort, Catherine R McGowan, Abdihamid Warsame, Olivier le Polain, Rosalind M Eggo, Anna Carnegie

Save the Children Somaliland: Mohamed Bobe, Mohamed Abdi, Saed Ibrahim, Mohamed Egeh, Binyam Gebru, Mohamed Magan, Mohamed Saed, Mohamed Kahow, Abdikarim M Ahmed

Republic of Somaliland Ministry of Health Development: Abdirahman I Hassan, Mohamed A Hergeeye, Saed M Soleman, Mohamed Y Warsame, Mustapha A Karim

Save the Children UK: Rachael Cummings, Emma Diggle, Olimpia de la Rosa

Murdoch Children's Research Institute: Catherine Satzke, Casey Pell, Kim Mulholland

Médecins Sans Frontières: Bhargavi Rao, Ruby Siddiqui, Kartini Gadroen

Funded by:

BILL& MELINDA GATES foundation