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Abstract

Ensuring sufficient free residual chlorine (FRC) up to the time and place water is consumed

in refugee settlements is essential for preventing the spread of waterborne illnesses. Water

system operators need accurate forecasts of FRC during the household storage period.

However, factors that drive FRC decay after water leaves the piped distribution system vary

substantially, introducing significant uncertainty when modelling point-of-consumption FRC.

Artificial neural network (ANN) ensemble forecasting systems (EFS) can account for this

uncertainty by generating probabilistic forecasts of point-of-consumption FRC. ANNs are

typically trained using symmetrical error metrics like mean squared error (MSE), but this

leads to forecast underdispersion forecasts (the spread of the forecast is smaller than the

spread of the observations). This study proposes to solve forecast underdispersion by train-

ing an ANN-EFS using cost functions that combine alternative metrics (Nash-Sutcliffe effi-

ciency, Kling Gupta Efficiency, Index of Agreement) with cost-sensitive learning (inverse

FRC weighting, class-based FRC weighting, inverse frequency weighting). The ANN-EFS

trained with each cost function was evaluated using water quality data from refugee settle-

ments in Bangladesh and Tanzania by comparing the percent capture, confidence interval

reliability diagrams, rank histograms, and the continuous ranked probability. Training the

ANN-EFS using the cost functions developed in this study produced up to a 70% improve-

ment in forecast reliability and dispersion compared to the baseline cost function (MSE),

with the best performance typically obtained by training the model using Kling-Gupta Effi-

ciency and inverse frequency weighting. Our findings demonstrate that training the ANN-

EFS using alternative metrics and cost-sensitive learning can improve the quality of fore-

casts of point-of-consumption FRC and better account for uncertainty in post-distribution

chlorine decay. These techniques can enable humanitarian responders to ensure sufficient

FRC more reliably at the point-of-consumption, thereby preventing the spread of waterborne

illnesses.
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1 Introduction

Waterborne illnesses are one of the leading causes of infectious disease outbreaks in humani-

tarian response settings [1]. In refugee and internally displaced persons (IDP) settlements,

water-users typically do not have drinking water piped to their premises; instead, they collect

water from public distribution points (tapstands) which they then transport, store, and use

over time in their dwellings. Recontamination of previously safe drinking water during this

post-distribution period of collection, transport, and storage is an important factor in water-

borne illness outbreaks, having been linked to outbreaks of cholera, hepatitis E, and shigellosis

in refugee and IDP settlements in Kenya, Malawi, Sudan, South Sudan, and Uganda [2–9]. To

prevent outbreaks in refugee and IDP settlements, drinking water needs to be protected

against pathogenic recontamination until the end of the household storage period when the

final cup is consumed. Global drinking water quality guidelines recommend providing at least

0.2 mg/L of free residual chlorine (FRC) throughout the post-distribution period to prevent

recontamination, and past research has identified that this is sufficient to prevent recontami-

nation by priority pathogens in humanitarian settings such as cholera and hepatitis E [10–15].

Thus, water system operators must determine how much FRC is needed at the point-of-distri-

bution to ensure that there is still at least 0.2 mg/L of FRC at the point-of-consumption. To do

this, they require models that can accurately predict FRC concentrations throughout the

household storage period.

Recent studies have developed deterministic, process-based models of FRC decay during

household storage that output point predictions of the post-distribution FRC concentration

[6, 16, 17]. However, deterministic models cannot quantify the uncertainty in post-distribu-

tion FRC decay. Water stored in the household is essentially an open system, so chlorine decay

can be influenced by a range of factors including environmental, water quality, and water han-

dling factors. This leads to a high degree of variability and uncertainty when modelling post-

distribution FRC decay as a single set of conditions at the point-of-distribution can produce a

range of FRC concentrations at the point-of-consumption [18]. In this context, point predic-

tions produced by deterministic models are not appropriate, and probabilistic modelling

approaches are required that can predict the distribution of probable point-of-consumption

FRC concentrations. However, probabilistic methods are not commonly used to model chlo-

rine decay, and when they are, they are typically used to improve the robustness of the model

calibration process, not to output probabilistic predictions of chlorine decay [19, 20].

Ensemble forecasting systems (EFSs) are a common type of probabilistic model that groups

together point predictions from multiple models into a probability distribution [21]. Whereas

deterministic models seek to find a single best prediction, an EFS aims to reproduce the under-

lying distribution of the observed data and quantify the uncertainty in the modelled processes

[21]. While EFSs are often formed from a collection of physical process-based models, they

can also be formed using data-driven models [21–23]. Data-driven modelling, including

machine learning or artificial intelligence, is increasingly being used to predict and monitor a

range of drinking water treatment and distribution processes [24–28]. Recent research has

used data-driven modelling for a complex range of tasks, e.g., controlling dosing of chlorine

[29] and other oxidants [30], predicting disinfection by-product formation [31], optimizing

cyanide removal [32], and detecting bacterial growth in water samples using image analysis

[33]. These models have been used for over two decades to model chlorine residuals in distri-

bution systems, either as standalone models [34–38] or as part of a hybrid data-driven and

process-based modelling system [19]. One of the most common and effective branches of

data-driven models used in drinking water–especially for modelling chlorine residuals–are

artificial neural networks (ANNs) [27, 30, 34–36, 38], though none of these previous studies
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have modelled chlorine residuals in the post-distribution period. ANNs have been used for

probabilistic modelling in an EFS [21, 22], though we are not aware of any ANN-EFS being

used in drinking water quality modelling, beyond our previous work which used an ANN-EFS

to generate risk-based FRC targets by predicting the probability of water users having insuffi-

cient point-of-consumption FRC [18]. This modelling approach was incorporated into the

Safe Water Optimization Tool (SWOT [39]), a web-based modelling tool that generates evi-

dence-based, site-specific FRC guidance for water system operators in humanitarian response

settings. A limitation of this earlier approach is that the probabilistic forecasts were underdis-

persed: the spread of the ensemble forecast was smaller than the spread of the observations.

This decreased the forecast reliability (the similarity between the forecast probability distribu-

tion and the underlying distribution of the observations) and the model’s ability to predict

high-risk events when the point-of-consumption FRC was below 0.2 mg/L, reducing the accu-

racy of risk-based FRC targets [18].

The underdispersion observed in this earlier work may have been at least, in part, due to

the use of mean squared error (MSE) as the cost function to train the ANN-EFS, as this pro-

duced a regression to the mean-type behaviour for the ensemble forecast [18]. An ANN’s cost

function measures the difference between the model predictions and the true values of the tar-

get variable. During training, the model is calibrated to minimize this difference [40]. While

symmetrical error metrics like MSE or MAE are common cost functions for ANNs, they prior-

itize performance at the average (mean or median, depending on the metric) of the observa-

tions, not for the whole output space [41, 42]. For an EFS, the predictions of the individual

models should form a representative sample of the whole distribution of the observations [43],

not just the average. Thus, alternative cost functions that prioritize prediction of the whole dis-

tribution of observations and not just the average, are needed for training an ANN-EFS.

There are two main approaches to overcoming the limitations of symmetrical error metrics

when training ANNs. One is to train the ANN using alternative error metrics [44]. The other

is through cost-sensitive learning. Cost-sensitive learning encompasses multiple approaches

used to alter the training of machine learning models to prioritize a specific region of the out-

put space or a specific behaviour. Common cost-sensitive learning approaches involve either

resampling from high-priority classes, changing a decision threshold in classification models,

or reweighting the cost function itself to reflect the cost of misprediction [45, 46]. In cost-sensi-

tive learning, the cost function becomes the combination of an error metric, symmetrical or

otherwise, and a weighting. Alternative error metrics and cost-sensitive learning have been

applied for regression and classification modelling to predict rare or high-priority events [47]

such as flooding [45, 48, 49]; fraudulent credit card purchases [50]; fault detection in machin-

ery [51]; cholera cases [52] and for differentiating between benign and malignant cysts for can-

cer detection [53]. They have even been applied for anomaly detection and compliance

monitoring in water treatment [54, 55]. However, these methods have not been applied to

probabilistic models like EFS.

This study sought to investigate whether modifying the cost function used to train an

ANN-EFS by combining alternative error metrics and cost-sensitive learning techniques could

resolve the problem of underdispersion and improve the reliability of point-of-consumption

FRC forecasts. Our first objective was to evaluate the effect of training an ANN-EFS using

alternative error metrics and cost-sensitive learning on the model’s probabilistic performance.

Our second objective was to identify the cost function that produced the best performance

when forecasting point-of-consumption FRC in humanitarian response settings. This is the

first study, to the authors’ knowledge, to use these approaches when modelling FRC during the

post-distribution period. Achieving these objectives will improve the reliability of point-of-

consumption FRC forecasts and, thus, the accuracy of risk-based chlorination guidance
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provided by the SWOT. This, in turn, will help humanitarian responders ensure that water

remains protected against pathogenic recontamination up to when the final cup is consumed.

2 Materials and methods

The following section provides an overview of the datasets used in our modelling and the

model development procedures. Additionally, we describe the alternative error metrics and

cost-sensitive learning approaches selected for investigation in this study, as well as the metrics

we used to evaluate the forecasting performance of the ANN-EFS.

2.1 Ethics statement

Field data collection for the datasets used in this study received approval from the Human Par-

ticipants Review Committee, Office of Research Ethics at York University (Certificate #: 2019–

186). Data collection in Bangladesh also received approval from the MSF Ethics Review Board

(ID #: 1932), and the Centre for Injury Prevention and Research Bangladesh (Memo #:

CIPRB/Admin/2019/168). All water quality samples were collected only when informed con-

sent was provided by the water user.

2.1.1 Inclusivity in global research. Additional information regarding the ethical, cul-

tural, and scientific considerations specific to inclusivity in global research is included in the

S1 Checklist.

2.2 Description of study sites and data sets

This study used routine water quality monitoring data from two refugee settlements in Bangla-

desh and Tanzania collected through the SWOT Project The Bangladesh dataset was collected

by Médecins Sans Frontières (MSF) from Camp 1 of the Kutupalong-Balukhali Extension Site,

Cox’s Bazaar, where 2,130 samples were collected between June and December 2019. At the

time of data collection, the site hosted 83,000 Rohingya refugees from neighbouring Myanmar.

This site used groundwater obtained from 14 boreholes equipped with inline chlorination

using high-test calcium hypochlorite (HTH). The Tanzania dataset was collected by the United

Nations High Commissioner for Refugees (UNHCR) and the Norwegian Refugee Council

(NRC) at the Nyaragusu Refugee Settlement, where 305 samples were collected between

December 2019 and January 2020. This settlement hosted over 130,000 refugees from Burundi

and the Democratic Republic of Congo at the time of data collection. Water was obtained

from both groundwater and surface water sources subject to inline chlorination using HTH.

At both sites, FRC was measured at the point-of-distribution immediately before collection

and then again in the same unit of water at the point-of-consumption after a follow-up period

ranging from 1 to 30 hours. Thus, each observation consisted of two paired water quality mea-

surements from the point-of-distribution and point-of-consumption. The elapsed time for

each observation was calculated from timestamps for the two measurements. In addition to

FRC, at the Bangladesh site, total residual chlorine, electrical conductivity (EC), pH, turbidity,

water temperature, and water handling behaviours were collected both at the point-of-distri-

bution and the point-of-consumption. At the Tanzania site, only FRC, EC, and water tempera-

ture were collected at the point-of-distribution and only FRC was collected at the point-of

consumption. The main type of error observed in the collected data was incomplete records,

where one or more water quality parameters were missing at the point-of-distribution. This

could have arisen due to equipment malfunction or lack of reagents. At both sites, more than

half of the samples were missing measurements for one water quality parameter other than

FRC (1,513 incomplete records in Bangladesh and 216 in Tanzania).
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Since the paired water quality samples were collected as a part of the overall water system

operations at each site, there was not a fixed water quality sampling schedule. In Bangladesh,

there were 2,130 samples collected over the six months, averaging 355 samples per month,

with the number of samples collected per month ranging from 72 in July to 471 in October. In

Tanzania, there were 305 samples collected over two months, with 199 collected in December

2019 and 106 collected in January 2020.

2.3 Model description

This study developed an ANN-EFS to forecast point-of-consumption FRC using inputs col-

lected at the point-of-distribution. The following sections describe the architecture of the base

learners (i.e., the individual ANNs within the ANN-EFS) and the approach to generating the

ANN-EFS from these base learners.

2.3.1 Base learners. Many model types are included in the ANN branch of machine learn-

ing. This study used the multilayer perceptron (MLP) type with one hidden layer for the base

learner as this ANN-type has previously been used in an ANN-EFS to forecast FRC during the

post-distribution period [18], and because it has consistently outperformed other models and

ANN types for predicting chlorine residual [28, 34, 35]. The base learners were built using

Python version 3.7.4 [56] and the Keras package [57]. Table 1 summarizes the hyperpara-

meters of the base learners. Hyperparameter selection is discussed below for the input vari-

ables, hidden layer size, and data division.

The ability of ANNs to incorporate routine water quality variables other than just upstream

residual chlorine is an advantage ANNs possess over process-based models of FRC decay [37,

38]. In humanitarian response, water quality data may be limited by constraints on data collec-

tion, limited water quality analysis capacities, or lack of reagents for field monitoring [58, 59].

This can be seen even in the current study where additional water quality data was collected,

but equipment issues led to large numbers of incomplete measurements. Thus, to ensure the

transferability of the modelling approach developed in this study, we only used the minimum

number of input variables that can be expected in a humanitarian response setting: point-of-

distribution FRC and elapsed time. S1 Appendix provides the data cleaning rules that were

used to prepare the dataset. Histograms of the input and output variables are provided in S1

and S2 Figs. We also considered a second input variable set with two additional water quality

variables: water temperature and electrical conductivity; however, the findings from this

Table 1. Summary of ANN base learner hyperparameters.

Model Architecture MLP

Number of hidden layers 1

Input variables Point-of-distribution FRC

Elapsed time (from point-of-distribution to point-of-consumption)

Output variable Point-of-consumption FRC

Hidden layer size Bangladesh: 16 nodes

Tanzania: 4 nodes

Hidden layer activation function Hyperbolic tangent

Output layer activation function Linear

Training function Nadam
Learning Rate: 0.1

Data division Training set: 50%

Validation set: 25%

Test set: 25%

https://doi.org/10.1371/journal.pwat.0000040.t001
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analysis were largely the same as those using only point-of-distribution FRC and elapsed time,

so these findings are not discussed in the main body (for more, see S2 Table).

The hidden layer size of the MLPs was selected by successively doubling the number of

nodes in the hidden layer and then selecting the hidden layer size where the performance

began to plateau or when the training performance began to exceed the testing performance,

indicating overfitting. The full results of this exploratory analysis are presented in S3 and S4

Figs.

The full dataset for each site was divided into calibration and testing subsets, with the cali-

bration subset further subdivided into training and validation data. The testing subset was

obtained by randomly sampling 25% of the overall dataset. The same testing subset was used

for all base learners so that each base learner’s testing predictions could be combined into an

ensemble forecast. The training and validation data were obtained by randomly resampling

from the calibration subset, with a different combination of training and validation data for

each base learner to promote ensemble diversity, with 66.7% of the calibration data (50% of

the overall dataset) used for training and 33.3% of the calibration (25% of the original dataset)

used for validation. The network is trained by iteratively adjusting the weights and biases of

the base learner to minimize the difference between the predictions and observations for the

training set as measured by the cost function. The validation set is used during training to

assess the cost function on data that is independent of the training set. Initially during training,

the cost function for the training and validation should both decrease, but as training contin-

ues the validation cost will increase, indicating that the model is overfitting (i.e., overly specific

to the training set). To prevent overfitting, we used a procedure called “early stopping” to end

training. The early stopping procedure ends training if the validation cost increases for a fixed

number of iterations called the patience. This study used a patience of 10 epochs.

A summary of the data, including the size and descriptive statistics for the calibration and

testing datasets, is provided in Table 2. Importantly, Table 2 shows a large decrease in FRC

from the point-of-distribution to the point-of-consumption for both the Bangladesh and Tan-

zania calibration and testing datasets, indicating that post-distribution FRC decay was substan-

tial at both sites.

2.3.2 ANN-EFS formation. Each base learner was trained individually, and the ensemble

forecast was formed by combining the predictions of each base learner into a probability den-

sity function (PDF). The ensemble size was selected via grid search by testing all ensemble

sizes between 50 and 500 base learners in increments of 50. The results of this grid search are

included in S5 and S6 Figs. An ensemble size of 200 base learners was selected as this was the

Table 2. Input and output variable descriptive statistics for calibration and testing datasets.

Calibration Testing

Number of

Observations

Mean Median Standard

Deviation

Number of

Observations

Mean Median Standard

Deviation

Bangladesh Point-of-distribution FRC

(mg/L)

1,597 0.71 0.66 0.38 533 0.70 0.64 0.38

Elapsed Time (hours) 10.02 6.70 5.04 9.66 6.67 4.93

Point-of-consumption FRC

(mg/L)

0.34 0.28 0.28 0.34 0.28 0.28

Tanzania Point-of-distribution FRC

(mg/L)

228 0.39 0.30 0.22 77 0.39 0.30 0.21

Elapsed Time (hours) 7.35 5.65 4.96 7.18 5.60 5.51

Point-of-consumption FRC

(mg/L)

0.20 0.10 0.15 0.18 0.10 0.15

https://doi.org/10.1371/journal.pwat.0000040.t002
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smallest size that could ensure optimal performance while avoiding the additional computa-

tional time needed for larger ensembles.

When developing an EFS, the base learners must be sufficiently different from each other

so that the resulting forecast accurately quantifies the uncertainty in the underlying behaviour

[60, 61]. This study achieved this by varying the weights and biases between the base learners

using two techniques. First, the initial weights and biases were randomized, so no two base

learners started the training process with the same parameters. Second, as discussed in Section

2.3.1, each base learner was trained on a different subset of the calibration dataset by randomly

sampling the training data and validation data. This provides variation in the base learner

parameters by optimizing each base learner to a different subset of the calibration data.

2.4 Error metrics

During training, an ANN’s weights and biases are calibrated to minimize the difference between

the predictions and the observed data. The cost function determines how this difference is mea-

sured, meaning the cost function determines the behaviour that the ANN learns during training

[41]. In this study, we generated cost functions by combining an error metric with a cost-sensitive

learning technique. Since the main limitation of past applications of ANN-EFSs for forecasting

point-of-distribution FRC was underdispersion leading to poor reliability [18], the error metrics

evaluated in this study all measure the similarity of the spread or distribution of the predictions

with the observed data. Details for each error metric are provided below.

Throughout this section O and P refer to the full set of observed and predicted point-of-con-

sumption FRC concentrations, respectively; oi and pi refer to the ith observed and predicted point-

of-consumption FRC concentration, respectively; and N refers to the total number of observations.

Note that in this section, a prediction refers to the output of one base learner in the ANN-EFS.

2.4.1 Mean squared error. MSE (Eq 1) is a symmetrical error metric that is commonly

used as a cost function in machine learning [41]. It is negatively oriented, meaning that lower

scores are preferable, with a lower limit of 0 and no upper bound. Past research has shown that

an ANN-EFS trained using MSE produced underdispersed forecasts of point-of-consumption

FRC which may be because MSE prioritizes performance near the mean of the distribution of

the observations [18]. This study used MSE as a benchmark for comparison with the other

error metrics considered.

MSE ¼
PN

i¼1
ðpi � oiÞ

2

N
ð1Þ

2.4.2 Nash Sutcliffe Efficiency. The Nash Sutcliffe Efficiency (NSE) measures the amount

of observed variance explained by the model and can be obtained by normalizing the MSE

about the variance of the observations (Eq 2) [62]. While NSE does not explicitly measure the

similarity of the spread or distribution between a base learner’s predictions and the observa-

tions, it does implicitly account for the spread of the observations in the cost by including the

variance of the observations in the cost calculation. NSE is positively oriented, meaning that

higher scores are preferable, with an upper limit of 1 and no lower limit. Since the Nadam opti-

mizer can only find the minimum of a function, NSE was multiplied by -1 to convert it to a

negatively oriented score with a lower limit of -1 and no upper bound.

NSE ¼ 1 �

PN
i¼1
ðpi � oiÞ

2

PN
i¼1
ðoi � OÞ2

ð2Þ
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2.4.3 Kling-Gupta Efficiency. Kling-Gupta Efficiency (KGE) arose out of a decomposi-

tion of NSE by Gupta et al [62] into three components (Eqs 3–5, respectively): correlation (r),

the ratio of the variance of the predictions to the variance of the observations (α), and the ratio

of the mean of the predictions to the mean of the observations (β).

r ¼
covðO; PÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covðO;OÞ � covðP; PÞ

p ð3Þ

a ¼
sP

sO
ð4Þ

b ¼
P
O

ð5Þ

The Euclidean distance is then calculated between the r, α, and β scores obtained by the

model and the scores for the ideal model, which would have a value of 1 for all three of the

above as the ideal correlation coefficient is 1 and the ideal model would produce means and

standard deviations equal to those of the observed data [62]. Eq 6 shows the calculation of the

Euclidean distance in the square root term. KGE is then calculated by subtracting the Euclid-

ean distance from 1 (Eq 6). This study included KGE because it explicitly penalizes differences

between the first and second moments of the distributions of the predictions and the observa-

tions. This may lead to each base learner better reproducing the underlying distribution of the

observations which could improve the reliability of the ANN-EFS as a whole. As with NSE,

KGE is positively oriented, with higher scores representing shorter Euclidean distances from

the ideal model. KGE has an upper limit of 1 and no lower limit. KGE was multiplied by -1 to

convert it into a negatively oriented score for training the base learners.

KGE ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr � 1Þ
2
þ ða � 1Þ

2
þ ðb � 1Þ

2

q

ð6Þ

2.4.4 Index of Agreement. The Index of Agreement (IoA) is a modified version of the

NSE with a revised denominator (Eq 7). IoA measures the difference between the deviations

about the mean of the predictions and the observations [63]. This study included IoA for this

ability to prioritize similar spread about the mean since this could help prevent forecast under-

dispersion. Like NSE, IoA is positively oriented with an upper limit of 1 and no lower limit.

IoA was converted into a negatively oriented score by multiplying the calculated score by -1.

IoA ¼ 1 �

PN
i¼1
ðpi � oiÞ

2

PN
i¼1
ðjpi � Oj þ joi � OjÞ2

ð7Þ

2.5 Cost-sensitive learning weightings

There are several techniques to implement cost-sensitive learning in data-driven modelling.

These include resampling techniques that address data imbalances through synthetic data or

strategic over/under-sampling; by modifying a classification model’s decision threshold; or by

weighting samples in the model’s cost function [45, 46, 64, 65]. We took this latter approach as

it integrates well with the use of alternative error metrics. Thus, during training, the error met-

ric determines how the difference between predictions and observations is measured, and the

cost-sensitive learning approach weights the error metric to prioritize performance in a certain

region of the output space.
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This study evaluated three weightings, described below. In the following sections, O is the

set of observed point-of-consumption FRC concentrations, oi is the ith observed point-of-con-

sumption FRC concentration, and wi is the weighting applied to the error metric for the ith

prediction-observation pairing. S2 Appendix shows the approach for calculating the cost func-

tions when each error metric is weighted with a cost-sensitive learning approach.

2.5.1 Weighting 1: Inverse FRC weighting. The first cost-sensitive learning approach,

inverse FRC weighting, uses a sample-based approach where the weight assigned to each

observation is based on that sample’s household FRC measurement [50, 65]. We multiplied

each observation by the inverse of its point-of-consumption FRC concentration to prioritize

high-risk observations (i.e., those with the lowest point-of-consumption FRC).

wi ¼
1

oi
ð8Þ

Eq 8 was modified for training the base learners of the ANN-EFS to account for the input

and output data being normalized between -1 and 1. Using Eq 8 with these normalized inputs

would produce two asymptotes at the median observed point-of-consumption FRC concentra-

tion. To avoid this, we added a fixed constant, 1.1 to the normalized observed value, as shown

in Eq 9, where inorm
is the ith normalized observation.

wi ¼
1

oinorm
þ 1:1

ð9Þ

2.5.2 Weighting 2: Class-based weighting by FRC. The second weighting, class-based

weighting by FRC, also prioritizes observations with low household FRC, however, in this

case, observations were first grouped into classes based on their household FRC value and

then a weight was assigned to each class, instead of to each observation. Class-based weighting

is a common cost-sensitive learning approach for classification models when prioritizing spe-

cific classes [45, 54, 55, 62, 65]. The thresholds used to group the observations into classes were

selected based on groupings used in literature and water quality guidelines for humanitarian

response [66–68]:

• FRC between 0 mg/L and 0.2 mg/L–observations with FRC in this range are considered high

risk since they have insufficient FRC to prevent recontamination [67].

• FRC between 0.2 mg/L and 0.5 mg/L–observations with FRC in this range are considered

moderate risk. This is sufficient to prevent recontamination under normal circumstances,

though it may be insufficient during a waterborne illness outbreak or when conditions

favour recontamination [67, 69].

• FRC between 0.5 mg/L and 1.0 mg/L–observations with FRC in this range are considered

low risk. This range is typically recommended to prevent recontamination during outbreaks

of waterborne illness [67].

• FRC above 1.0 mg/L–observations with FRC in this range are considered very low risk as

this is above even the range recommended during outbreaks of waterborne illness [67]. If

recontamination occurs with FRC above 1.0 mg/L, there may be factors other than insuffi-

cient chlorine residual driving recontamination [69].

The weights assigned to each class were determined based on the risk of household recon-

tamination to prioritize performance on observations with the greatest risk. The highest prior-

ity class, point-of-consumption FRC below 0.2 mg/L, was assigned a weight of 1.0. This weight
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was then halved for each subsequent class (Eq 10).

wi ¼

1:0 if 0 � oi < 0:2

0:5 if 0:2 � oi < 0:5

0:25 if 0:5 � oi < 1:0

0:125 if oi � 1:0

ð10Þ

8
>>>><

>>>>:

2.5.3 Weighting 3: Inverse frequency weighting. The third weighting used a special type

of class-based weighting called inverse frequency weighting, where the weights are assigned to

counteract data imbalances, ensuring each class is equally prioritized during training [27, 54,

55, 65, 70–72]. To achieve this, the weights for each class were calculated as the inverse of the

relative frequency of observations in that class. Using the same classes as Weighting 2, the

inverse frequency weight for the jth class was calculated as:

wj ¼
number of observations in category j

total number of observations

� 1

ð11Þ

2.6 Ensemble verification metrics and model selection

Since the ANN-EFS predicts point-of-consumption FRC as a probability distribution and not

a point prediction, performance metrics for point predictions, such as MSE or NSE, cannot be

used to evaluate the EFS [21, 61]. Instead, this study evaluated the ANN-EFS using ensemble

verification metrics which measure the probabilistic performance of the EFS. Probabilistic

forecasts are typically evaluated on two criteria: reliability and sharpness [73]. Reliability refers

to the similarity between the probability distributions of the forecast and the observations, and

sharpness refers to the narrowness of the forecast spread around a given observation. The first

priority when evaluating ensemble forecasts is reliability, but a sharper forecast is preferable

over a less sharp forecast if the reliabilities are the same [61, 73]. EFSs are evaluated for their

ability to generalize on new data, so we only used these metrics to evaluate performance on the

test dataset.

The following sections describe the ensemble verification metrics used in this study.

Throughout the following section, O refers to the full set of observed point-of-consumption

FRC concentrations, and oi refers to the ith observation, where there are I total observations in

the test dataset. F refers to the full set of forecasted point-of-consumption FRC concentrations,

where f m
i is the prediction by the mth base learner in the ANN-EFS for the ith observation and

Fi refers to the ensemble forecast for the ith observation. Thus, for each observation, there is a

corresponding probabilistic forecast. Together these are referred to as a forecast-observation

pair. For the following metrics, it is assumed that the predictions of each base learner in the

ensemble are sorted from low to high for each observation such that f m
i � f mþ1

i from m = 1 to

m = M.

2.6.1 Percent capture. Percent capture is the percentage of observations where the

observed point-of-consumption FRC concentration was within the limits of the ensemble’s

forecast. While percent capture does not directly evaluate reliability or sharpness, it does indi-

cate the degree to which the forecasts are underdispersed. The percent capture is a positively

oriented score, with an upper limit of 100% and a lower limit of 0%. To calculate percent cap-

ture, observation oi is considered captured if f 1
i � oi � f M

i . When evaluating the ensemble

forecasts, we used the percent capture of the overall dataset (PC) as an indicator of underdis-

persion and the percent capture of observations with point-of-consumption FRC below 0.2

mg/L (PC<0.2) to indicate how well the ANN-EFS can capture high-risk observations.
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2.6.2 Rank Histograms. The Rank Histogram (RH) is a visual tool that assesses the reli-

ability of ensemble forecasts. The RH is constructed by adding each observation, oi to the

sorted ensemble forecast Fi and determining the observation’s rank within the ensemble (i.e.,

the corresponding m if it were a base learner prediction). The RH is thus simply the histogram

of the rank assigned to each oi. If the forecast and observed probabilities are the same, then any

observation is equally likely to occur in any of the M+1 ranks, which would result in a flat RH

[61, 74]. The more dissimilar the forecasted and observed probability distributions are, the far-

ther from flat the RH will be. Candille & Talagrande [75] proposed a numerical score, the δ
score (Eq 12), to measure deviations from flatness in an RH. The ideal score is 1, with scores

much greater than 1 indicating substantial deviations from flatness and scores less than 1 indi-

cating interdependence between ensemble predictions. A δ score other than 1 only indicates

deviations from flatness, not the reason for the deviation (i.e., dispersion, skew, etc.) which

must be determined from visual inspection [75].

d ¼
D

Do
ð12Þ

The two components of the δ score are shown in Eqs 13 and 14 where M is the total number

of base learners, I is the total number of observations, and sk is the number of elements in the

kth bin of the RH [75].

D ¼
PMþ1

k¼1
sk �

I
M þ 1

� �2

ð13Þ

Do ¼
I �M
M þ 1

ð14Þ

The δ score was calculated for both the overall dataset (referred to throughout as δ) and for

only those observations where the observed point-of-consumption FRC was below 0.2 mg/L

(δ<0.2).

2.6.3 Confidence interval reliability diagram. Reliability diagrams are plots of the

observed relative frequency of events against the forecast probability of that event occurring

[76]. This diagram has been adapted for ANN-EFS modelling as the confidence interval (CI)

reliability diagram which compares the frequency of observed values with the corresponding

CI of the ensemble, where the ensemble CIs are derived from the sorted forecasts of the base

learners (for example, the forecast 90% CI would include the range between f0.05M and f0.95M)

[21]. We extended this further by plotting the percent capture within each CI against the CI

level.

The CI reliability diagram is a visual indicator of forecast reliability. The ideal model would

have percent capture in all CIs plotted along the 1:1 line; showing that the forecasted probabili-

ties at each level are equal to the observed probabilities. We previously developed a numerical

score for the CI reliability diagram, the CI reliability score, which calculates the sum of the

squared vertical distance between the percent capture within each CI and the 1:1 line [18].

Since a smaller absolute distance means that each point is closer to the 1:1 line, this score is

negatively oriented with a minimum value of 0. We calculated this score using CI thresholds,

k, from 10% to 100% in 10% increments (Eq 15) for both the overall data set (CIscore) and for

only those observations where the observed point-of-consumption FRC was below 0.2 mg/L

(CIscore<0:2
).

CI Reliability Score ¼
P1

k¼0:1
ðj � Percent Capture in CIjÞ

2
ð15Þ
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2.6.4 Continuously ranked probability score. The continuously ranked probability score

(CRPS) is the mean integrated square difference between the forecast cumulative distribution

function (CDF) and the observed CDF for each forecast-observation pairing. CRPS simulta-

neously measures the reliability, sharpness, and uncertainty of a forecast [76, 77]. The calcula-

tion of the CRPS is given in Eq 16 where Fi is the CDF of the forecast values for observation oi

and the x axis referenced is the point-of-consumption FRC concentration. Since each observa-

tion is a discrete value, its CDF is represented with the Heaviside function H(x�xa} which is a

stepwise function: 0 for all concentrations of point-of-consumption FRC below the observed

concentration and 1 for all concentrations above the observed. Eq 16 shows the calculation of

CRPS for a single forecast-observation pairing. To evaluate the ANN-EFS, the average CRPS,

CRPS, is calculated by taking the mean CRPS over all forecast-observation pairs.

CRPS ¼
R1
� 1
ðFiðxÞ � Hfx � oigÞ

2dx ð16Þ

Hersbach [77] derived a calculation of CRPS for EFS that treats the forecast CDF as a step-

wise continuous function with N = M+1 bins where each bin is bounded at two ensemble fore-

casts. CRPS is calculated from gn , the average width of bin n (average difference in FRC

concentration between forecast values m and m+1) and on , the likelihood of the observed

value being in bin n. The CRPS can be calculated as:

CRPS ¼
PN

n¼1
gn ½ð1 � onÞp

2

n þ onð1 � pnÞ
2
� ð17Þ

Where pn is the probability associated with each bin, pn ¼
n
N [77].

2.6.5 Skill scores. Skill scores evaluate improvement over a baseline model by normalizing

the score obtained for an ensemble verification metric using a baseline score and an ideal

score. Any score can be converted to a skill score using Eq 18. The skill score values range

from −1 to 1, with 1 indicating that the score obtained by the model being evaluated is the

ideal score and a positive score indicating improvement over the baseline. A skill score of 0

means that there is no difference between the score for the model being evaluated and the

baseline, and a negative score indicates that the score obtained is worse than the baseline. In

this study, the scores obtained using the ANN-EFS trained with unweighted MSE were used as

the baseline, and all of the models tested were the same (ANN-EFS with the same size and base

learner architecture), with the exception of the cost function. Therefore, the skill score indi-

cates the effect of using each cost function for training the ANN-EFS for forecasting point-of-

consumption FRC relative to the baseline performance obtained when the ANN-EFS is trained

with unweighted MSE.

Skill Score ¼
score obtained � baseline

ideal score � baseline
ð18Þ

2.7 Code and data availability

The code to train, test, and evaluate the ANN-EFS is available on the SWOT Project’s GitHub

at the following link: https://github.com/safeh2o/swot_research_cost_sensitive. This reposi-

tory also includes the cleaned Tanzania and Bangladesh datasets.

3 Results and discussion

In the following sections, we first present the performance of the ANN-EFS trained with the

baseline cost function: unweighted MSE. Second, we evaluate the performance of the

ANN-EFS when trained using the alternative error metrics and cost-sensitive learning tech-

niques presented in Sections 2.4 and 2.5. Third, we select the best cost function for training an
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ANN-EFS to forecast point-of-consumption FRC using the performance metrics outlined in

Section 2.6. Fourth, we compare the ANN-EFS performance when trained with the selected

cost function against the baseline performance. Finally, we discuss the implications of these

findings for practitioners in humanitarian response.

3.1 Baseline ANN-EFS performance

Figs 1 and 2 show the baseline performance of the ANN-EFS for the Bangladesh and Tanzania

datasets, respectively. These figures show the ensemble forecasts and observations (Figs 1A

and 2A), RHs (Figs 1B and 2B), and CI reliability diagrams (Figs 1C and 2C) for each site. For

both datasets, the forecasts produced by the ANN-EFS trained with the baseline cost function

are highly underdispersed: the forecast spread is much smaller than the spread of the observa-

tions; the CI reliability diagram has all points well below the 1:1 line; and the RH has a pro-

nounced U-shape. This underdispersion is also reflected in the low percent capture (below

50% for both the overall dataset and observations with FRC below 0.2 mg/L).

The underdispersion also led to poor reliability. This is best reflected in the RH and associ-

ated δ scores. An ideal RH would be flat, reflecting a uniform distribution [61, 74, 75]. The U-

shaped RHs shown in Figs 1B and 2B then indicate not only underdispersion but also poor

reliability, which is also reflected in the δ scores between 19 to 153, which are substantially

larger than 1 indicating poor reliability. This poor reliability is also shown in the CI reliability

diagram where, for all CI levels, the percent capture at each CI level was much lower than the

ideal, shown on the 1:1 line. Together these demonstrate that the baseline ANN-EFS, trained

using a conventional cost function (unweighted MSE) produced highly underdispersed fore-

casts with poor reliability, despite unweighted MSE being a common cost function for ANNs

Fig 1. Baseline ANN-EFS performance for Bangladesh dataset. Forecast shown with true observations in (a), rank histogram shown in (b), and CI reliability

diagram shown in (c).

https://doi.org/10.1371/journal.pwat.0000040.g001
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[41]. This supports past findings that show that symmetrical error metrics like MSE are not

effective cost functions unless the desired model behaviour is convergence to the mean of the

distribution of the observations [41, 42]. While both Crone et al. [41] and Toth [42] considered

this in the context of regression-based modelling where the cost-sensitive behaviour was asym-

metric (i.e., the cost of overprediction errors was different from underprediction in errors).

Our findings show that the limitations of MSE are also important for probabilistic modelling

using EFS.

3.2 Comparison of alternative error metrics and cost-sensitive learning

Fig 3 compares the skill scores obtained for the ensemble verification metrics listed in Section

2.6 when the ANN-EFS was trained with each cost function considered in this study. The raw

scores are provided in S1 Table. As discussed in Section 2.3, we evaluated a second input vari-

able combination, which included electrical conductivity and water temperature in addition to

point-of-distribution FRC and elapsed time, the results for which are provided in S2 Table. Fig

3 shows that for each ensemble verification metric there was some combination of an alterna-

tive error metric and cost-sensitive learning technique that yielded a positive skill score, indi-

cating that alternative error metrics and cost-sensitive learning could always be combined to

improve performance over the baseline.

Fig 3 shows that the forecast dispersion, measured using percent capture, improved sub-

stantially when the ANN-EFS was trained with the cost functions that combine alternative

error metrics and cost-sensitive learning, compared to baseline training with MSE. The highest

skill scores for PC ranged from 0.698 in Tanzania to 0.725 in Bangladesh, and the highest skill

scores for PC<0.2 ranged from 0.706 in Tanzania to 0.791 in Bangladesh. This indicates that

Fig 2. Baseline ANN-EFS performance for Tanzania dataset. Forecast shown with true observations in (a), rank histogram shown in (b), and CI reliability

diagram shown in (c).

https://doi.org/10.1371/journal.pwat.0000040.g002
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Fig 3. Skill scores for each cost function considered. Left column: Bangladesh, right column: Tanzania. Skill scores shown in rows, from the top: PC, PC<0.2,

CIscore, CIscore<0:2
, δ, δ<0.2 and CRPS.

https://doi.org/10.1371/journal.pwat.0000040.g003
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training the ANN-EFS with alternative error metrics and cost-sensitive learning led to a 70%

improvement in forecast dispersion relative to the baseline performance. The largest improve-

ment in percent capture was produced when the error metric used in the cost function was

either KGE or IoA. This is likely because the scores for these error metrics improve as the

spread of the base learner’s predictions becomes more similar to the spread of the observa-

tions. KGE’s β term measures this as the similarity between the variance of the predictions and

the observations [61]. IoA measures this as the similarity of the deviations about the mean for

the predictions and observations [62]. Training the ANN-EFS with NSE did not consistently

improve the percent capture as NSE uses the ratio of absolute differences normalized about the

variance of the observations but does not include the predicted variance. Without including

the predicted variance, NSE cannot explicitly ensure that the spread of the predictions matches

the spread of the observations and thus, training the ANN-EFS with NSE does not improve

forecast dispersion.

In addition to the alternative error metrics, cost-sensitive learning also improved forecast

dispersion. Fig 3 shows that when the ANN-EFS was trained using KGE or IoA combined

with any of the three cost-sensitive learning approaches, the model achieved higher skill scores

for percent capture than when the model was trained using the cost-insensitive (unweighted)

form of the error metric. The best overall percent capture (PC) at both sites was obtained when

the cost function used to train the ANN-EFS included Weighting 3 (inverse frequency weight-

ing). Inverse frequency weighting even led to improvements in PC when combined with MSE

or NSE. This is likely because inverse frequency weighting rebalances the error metric to

equally prioritize the full output space, leading to better predictions in regions of the output

space that have fewer observations [45]. When considering only observations with point-of-

consumption FRC below 0.2 mg/L (PC<0.2), Weightings 1 and 2 typically produced better per-

formance, likely because these approaches prioritize performance on observations with lower

point-of-consumption FRC. Despite this, in Bangladesh, the ANN-EFS trained using KGE

with inverse frequency weighting produced the best capture even of these high-risk

observations.

Both the CI reliability score and the RH δ score followed similar patterns to the percent cap-

ture shown in Fig 3, with alternative error metrics and cost-sensitive learning producing sub-

stantial improvements in these scores. The highest CIscore at each site was 0.691 in Bangladesh

and 0.726 in Tanzania and the highest CIscore<0:2
was 0.659 in Bangladesh and 0.734 in Tanzania.

The improvements were even higher for the δ score with skill scores ranging from 0.729 to

0.912 for the overall dataset and between 0.838 and 0.95 for observations with household FRC

below 0.2 mg/L. These results demonstrate that the use of alternative error metrics and cost-

sensitive learning can improve forecast reliability when modelling point-of-consumption FRC

with an ANN-EFS. The highest skill scores, reflecting the largest improvement, were obtained

when the ANN-EFS was trained with KGE. This is likely because KGE measures the actual

similarity of the first two moments of the distribution (mean and standard deviation) between

the predictions and observations.

The CRPS also improved when the ANN-EFS was trained with alternative error metrics

and cost-sensitive learning, though not when trained using KGE or IoA with Weighting 3.

This is likely because CRPS tends to be dominated by the sharpness term [76, 77] so the

improvements in dispersion achieved when the ANN-EFS was trained using these cost func-

tions may have also led to the CRPS becoming worse as the forecast spread become larger. As

discussed in Section 2.6, the first priority when evaluating an ensemble forecast must be reli-

ability, and sharpness should only be considered once adequate reliability has been obtained

[73].
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These findings highlight that training an ANN-EFS using alternative error metrics and

cost-sensitive learning substantially improves the dispersion and reliability of ensemble fore-

casts of point-of-consumption FRC. The improvement over the baseline performance was

obtained by changing only a single hyperparameter of the base learners of the ANN-EFS: the

cost function. This is consistent with findings from several other fields including inventory

management [41], flood modelling [42, 49], fraud detection [50], epidemiology [52], and

drinking water quality modelling [54, 55], all of which have shown that changing the error

metric and implementing cost-sensitive learning is much more effective than using standard

symmetrical error metrics and cost insensitive learning. However, the present study shows this

for the first time when using probabilistic EFS. This is an important distinction because the

performance of a regression or classification model can be evaluated using its cost function,

and thus the desired behaviour can be more easily specified for the model. For example, Olo-

wookere et al. [50] developed a cost-sensitive learning framework for detecting fraudulent

credit card purchases where the cost of misprediction was derived from the amount of money

spent in the fraudulent transaction, and Crone et al. [41] defined a novel, asymmetric error

metric, based on the actual cost of over and understocking shelves in a warehouse. Thus, the

desired behaviour can be directly integrated into the ANN training. By contrast, the ensemble

verification metrics used to evaluate the ANN-EFS in this study cannot be used to train the

base learners since ensemble verification metrics require an ensemble forecast. For example,

using KGE as the error metric only evaluates the similarity between the distributions at the

base learner level and is not directly a measure of the ANN-EFS’s overall probabilistic perfor-

mance. Thus, it is an important finding that training the ensemble base learners with this cost

function translated into improved reliability when the base learner predictions were combined

into an ensemble forecast. In consideration of the first aim of this study, which was to investi-

gate the effect of alternative error metrics and cost-sensitive learning on the probabilistic fore-

casting performance of ANN-EFS, we see that by selecting alternative error metrics and cost-

sensitive learning approaches that reflect the intended behaviour, the ANN-EFS performance

vastly outperforms a standard cost function (unweighted MSE) when forecasting point-of-

consumption FRC. It is also worth noting that training the base learners using alternative cost

functions and cost-sensitive learning yielded greater improvements in reliability and disper-

sion over the baseline ANN-EFS. than were obtained in an earlier ANN-EFS study which used

post-statistical processing [18]. Statistical post-processing is a common approach to improving

the reliability and dispersion of process-based EFS [78], but for ANN-EFS changing the cost

function appears to be more effective. This is also consistent with findings from regression

modelling that determined that altering the cost function is more effective than post-process-

ing for obtaining a desired model behaviour [79].

3.3 Selection of preferred cost function

This study used a ranking approach to select the preferred cost function. The skill scores pre-

sented in Fig 3 were used to determine how often the ANN-EFS trained with a given cost func-

tion (i.e., the combination of an alternative error metric and cost-sensitive learning approach)

produced either the best score for an ensemble verification metric (“best”) or one of the five

best scores (“top five”). Fig 4 shows the results of this ranking approach, identifying the fre-

quency with which each cost function was either the “best” or one of the “top five” for each

ensemble verification metric at each site.

Fig 4 shows that in all cases, the “best” cost functions incorporated cost-sensitive learning,

and 15 of the 17 “best” cost functions (89%) used an error metric other than MSE. Similarly,

71 of the 80 “top five” cost functions (89%) incorporated cost-sensitive learning, and 76 of the
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80 “top five” cost functions (95%) used an error metric other than MSE. Furthermore, the

ANN-EFS trained with the baseline cost function, unweighted MSE, never produced the “best”

or one of the “top five” scores for any ensemble verification metric. This supports the finding

that unweighted MSE is not appropriate for training an ANN-EFS to probabilistically forecast

point-of-consumption FRC and that combining alternative error metrics with cost-sensitive

learning to train the ANN-EFS leads to better probabilistic performance. This also reinforces

that training an ANN-EFS with alternative error metrics and cost-sensitive learning improves

the probabilistic performance of the ensembles, as demonstrated through improved dispersion

and reliability of the ensemble forecasts.

Of the cost functions considered in this study, Fig 4 shows that combining KGE with

Weighting 3 (inverse frequency weighting) consistently outperformed the other cost functions.

This combination was the “best” cost function in 9 of a possible 16 cases and was one of the

“top five” in 12 of a possible 16 cases. The high performance of this cost function is likely due

to the explicit way in which KGE measures reliability, and the ability of inverse frequency

weighting to promote performance throughout the output space. KGE promotes improved

reliability by explicitly evaluating the difference between the observed and predicted mean and

variance (the first two moments of a probability distribution) and the correlation for each base

learner in the ANN-EFS [61]. This combines well with inverse frequency weighting which

ensures an equal prioritization throughout the output space by more heavily weighting the

most sparsely populated output classes. Thus, when combined, KGE with inverse frequency

weighting ensures similarity between the distribution of each base learner’s predictions and

the observations across all regions of the output space, equally. Interestingly, inverse frequency

weighting was developed to overcome data imbalances in classification machine learning

problems, but the base learners in this study performed regression, not classification. One rea-

son that this weighting was effective may be that classification problems are inherently proba-

bilistic; classification models typically select the class with the highest probability of being true

[45]. Thus, while the base learners of the ANN-EFS in this study were regression-based, the

overall ensembles were probabilistic, and hence, a probabilistic classification-based cost-sensi-

tive learning approach was most effective for training the base learners. This highlights a

potential avenue for future research into the integration of classification techniques in the

training of probabilistic EFSs, even if the base learners in these models are regression-based.

3.4 Performance comparison: Baseline vs selected cost function

This section compares the performance of the ANN-EFS used to forecast point-of-consump-

tion FRC when trained with the selected cost function (KGE with inverse frequency weighting)

to the baseline performance. Fig 5 compares the forecasted and observed point-of-consump-

tion FRC for the ANN-EFS trained with both the selected cost function and the baseline cost

function. This figure shows that when the ANN-EFS is trained with the selected cost function,

the forecasts (shown in red) better match the spread of the observations than the baseline

(shown in blue). This leads to better capture of the observed household FRC concentrations

with PC increasing from 22.3% to 78.6% in Bangladesh and from 31.2% to 77.9%. and PC<0.2

increasing from 25.3% to 84.4% in Bangladesh and from 30.6% to 77.6% in Tanzania when

using the selected cost function. Thus, when trained using the selected cost function, the

ANN-EFS captures over 70% of overall and high-risk observations, whereas when trained

using the baseline, the model failed to capture even half of the observations.

These improvements in forecast dispersion also improve ensemble reliability. This is

reflected in the RHs for each site shown in Fig 6 for Bangladesh and in Fig 7 for Tanzania.

While the RHs produced from the forecasts of the ANN-EFS trained using the selected cost

PLOS WATER Cost-sensitive learning for forecasting post-distribution FRC with ANN-EFS

PLOS Water | https://doi.org/10.1371/journal.pwat.0000040 September 6, 2022 18 / 30

https://doi.org/10.1371/journal.pwat.0000040


function are still U-shaped, indicating underdispersion, the height of the outlier bars (bins 0

and 200 which indicate under- and over- outliers, respectively) are much lower, in some cases

by a factor of 5. Thus, the RHs produced when the ANN-EFS is trained with the selected cost

function are much closer to the ideal than those produced when the ANN-EFS was trained

with the baseline cost function. This demonstrates that the ANN-EFS forecasts are more reli-

able when the model is trained using the selected cost function, which in turn means that

Fig 4. Combined frequency for each cost function as either best (left) or “top five” (right) for each ensemble

verification metric and all metrics combined (bottom row).

https://doi.org/10.1371/journal.pwat.0000040.g004
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predicted probabilities obtained from the ANN-EFS (e.g., the probability of FRC being below

0.2 mg/L for a given point-of-distribution target) are much closer to the true probabilities

when trained with the selected cost function as opposed to the baseline.

This improved reliability is also reflected in the CI reliability diagrams. Fig 8 shows the CI

reliability diagrams for both the Bangladesh and Tanzania datasets for the overall dataset and

for observations with point-of-consumption FRC below 0.2 mg/L. Fig 8 shows that at both

Fig 5. Forecast-observation comparison using baseline and selected cost function. Forecast observation pairs shown for: (a) Bangladesh–all observations, (b)

Tanzania–all observations, (c) Bangladesh–observations with FRC below 0.2 mg/L, and (d) Tanzania–observations with FRC below 0.2 mg/L.

https://doi.org/10.1371/journal.pwat.0000040.g005
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sites, the ANN-EFS trained with the selected cost function had capture values much closer to

the ideal value at each CI level than when trained using the baseline cost function. This indi-

cates that the improvement in reliability observed is not just due to improved dispersion at the

upper and lower limits of the forecast, but that the predicted and true probabilities are much

closer at every CI level of the forecast. Thus, training the ANN-EFS with the selected cost func-

tion led to an overall improvement in reliability

The CI reliability diagram can also demonstrate the impact of improved reliability on the

quality of risk-based FRC targets produced by the ANN-EFS. For example, consider a humani-

tarian responder who seeks a point-of-distribution FRC target to ensure only a 10% risk of

users would have insufficient FRC at the point-of-consumption. They would obtain this target

from the lower bound of the 80th percentile CI (this CI is bounded by the 10th and 90th percen-

tiles of the forecast). To ensure the validity of the target for this risk level, the 80th percentile CI

should capture 80% of the observations. When the ANN-EFS was trained with unweighted

MSE, the 80th percentile CI only captured 8% of the observations in Bangladesh and 12% in

Tanzania. Thus, an FRC target generated from this CI is unlikely to produce the desired level

of safety since the forecast probability distribution is very different from the true distribution

of the data. By contrast, when the ANN-EFS is trained with the selected cost function, the 80th

percentile of the forecast captured 41% of observations in Bangladesh and 52% in Tanzania.

While these are still underdispersed, they are much closer to the ideal capture, meaning that

the forecast distribution is closer to the true distribution of the observations and thus the tar-

gets generated by this model are more likely to produce the desired level of safety.

The findings presented above show that training an ANN-EFS using the selected cost func-

tion, KGE with inverse frequency weighting, produces better dispersed and more reliable

probabilistic forecasts of point-of-consumption FRC than when the ANN-EFS is trained with

unweighted MSE. These improvements can lead to improved risk-based FRC targets since the

ANN-EFS can better reproduce the underlying distribution of the observed data when predict-

ing the probability of high-risk events occurring, thus giving operators the tools to mitigate

these high-risk events. Based on these findings, we recommend that the selected cost function,

KGE with inverse frequency weighting, replace unweighted MSE as the cost function used in

the SWOT. The findings of this section also demonstrate the importance of selecting an appro-

priate cost function when training ANNs. In drinking water research, two recent studies have

proposed ANN model building frameworks [80, 81], however, neither of these studies include

guidance on the selection of an appropriate cost function. Based on the substantial improve-

ments in performance obtained in this study when training the ANN-EFS with the selected

cost function as opposed to a default, as well as the improvements over cost-insensitive train-

ing obtained in other drinking water studies [54, 55], we recommend that future model devel-

opment frameworks for drinking water modelling should also include consideration for

selection of an appropriate cost function.

3.5 Implications for practitioners

As discussed in Section 1, the SWOT uses an ANN-EFS to predict the risk of having insuffi-

cient FRC in drinking water at the point-of-consumption in refugee and IDP settlements. In

these settings, risk-based FRC targets help water system operators understand how household

water safety risks may change when adjusting chlorination levels, allowing operators to balance

this risk against other concerns such as disinfection by-product formation or chlorine taste

and odour acceptance. The selected cost function (KGE with inverse frequency weighting)

produces substantial improvements in forecast reliability compared to the current approach

for training ANN-EFS used by the SWOT (unweighted MSE). Implementing the selected cost
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function to train the SWOT ANN-EFS would result in improved forecasts of point-of-con-

sumption FRC that more accurately reflect the true distribution of observed household FRC

data. This would result in predictions of the risk of having insufficient FRC at the point-of-

consumption that are closer to the true risk, providing operators greater confidence in the pre-

dictive forecasting offered by the SWOT and enabling them to better manage the risks of both

under- and over-chlorination in emergency water supply. Additionally, while the SWOT

Fig 6. RHs for Bangladesh: (a) baseline model–all observations (b) selected cost function–all observations (c) baseline model,–observations with FRC below 0.2

mg/L and (d) selected cost function,–observations with FRC below 0.2 mg/L.

https://doi.org/10.1371/journal.pwat.0000040.g006
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requires paired FRC measurements from the point-of-distribution and the point-of-consump-

tion, implementing the cost-sensitive learning approach presented in this study would not

require any changes from the existing data collection protocol recommended for the SWOT.

Thus, the improvements in FRC forecasting ability can be implemented in the SWOT with no

additional time investment from the user.

Fig 7. RHs for Tanzania: (a) baseline model–all observations (b) selected cost function–all observations (c) baseline model,–observations with FRC below 0.2

mg/L and (d) selected cost function,–observations with FRC below 0.2.

https://doi.org/10.1371/journal.pwat.0000040.g007
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4 Conclusion

Accurate forecasts of point-of-consumption FRC help water system operators in humanitarian

response settings prevent the spread of waterborne illnesses. A major challenge in modelling

FRC outside of the distribution system is the high degree of uncertainty in post-distribution

chlorine decay. To account for this, probabilistic models like ANN-EFS are needed. This study

Fig 8. CI reliability diagrams for the baseline and selected cost function: (a) Bangladesh–all observations, (b) Tanzania–all observations, (c) Bangladesh–

observations with FRC below 0.2 mg/L, and (d) Tanzania–observations with FRC below 0.2 mg/L.

https://doi.org/10.1371/journal.pwat.0000040.g008
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used alternative error metrics and cost-sensitive learning to train an ANN-EFS for forecasting

post-distribution FRC in two refugee settlements in Bangladesh and Tanzania. We found that

using these alternative error metrics and cost-sensitive learning techniques to train the

ANN-EFS improved both the forecast dispersion and reliability relative to the ANN-EFS

trained using the baseline cost function, unweighted MSE. We also selected KGE with inverse

frequency weighting as the preferred cost function as it produced the best probabilistic perfor-

mance for forecasting point-of-consumption FRC. This cost function should be used for fore-

casting point-of-consumption FRC in refugee and internally displaced person settlements and

can be implemented in the Safe Water Optimization Tool to improve the reliability of the

ANN-EFS forecasts and to improve the risk-based chlorination targets for water system opera-

tors in these settlements.
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22. Boucher M-A, Laliberté J-P, Anctil F. An experiment on the evolution of an ensemble of neural networks

for streamflow forecasting. Hydrol Earth Syst Sci. 2010; 603–612. https://doi.org/10.5194/hess-14-603-

2010

23. Shrestha DL, Solomatine DP. Data-driven approaches for estimating uncertainty in rainfall-runoff

modelling. Int J River Basin Manag. 2008; 6: 109–122. https://doi.org/10.1080/15715124.2008.

9635341

24. Aliashrafi A, Zhang Y, Groenwegen H, Peleato NM. A review of data-driven modelling in drinking water

treatment. Rev Environ Sci Biotechnol. 2021; 20:985–1009. https://doi.org/10.1007/s11157-021-

09592-y

25. Dogo EM, Nwulu NI, Twala B, Aigbavboa C. A survey of machine learning methods applied to anomaly

detection on drinking-water quality data. Urban Water J. 2019; 16: 235–248. https://doi.org/10.1080/

1573062X.2019.1637002

26. Li L, Rong S, Wang R, Yu S. Recent advances in artificial intelligence and machine learning for nonlin-

ear relationship analysis and process control in drinking water treatment: A review. Chem Eng J. 2021;

405: 126673. https://doi.org/10.1016/j.cej.2020.126673

27. O’Reilly G, Bezuidenhout CC, Bezuidenhout JJ. Artificial neural networks: applications in the drinking

water sector. 2018. Water Supply. 2018; 18: 1869–1887. https://doi.org/10.2166/ws.2018.016

PLOS WATER Cost-sensitive learning for forecasting post-distribution FRC with ANN-EFS

PLOS Water | https://doi.org/10.1371/journal.pwat.0000040 September 6, 2022 27 / 30

https://doi.org/10.2166/wh.2008.072
https://doi.org/10.2166/wh.2008.072
http://www.ncbi.nlm.nih.gov/pubmed/18401121
http://www.cdc.gov/safewater/chlorine-residual-testing.html
https://doi.org/10.2166/wh.2014.027
https://doi.org/10.2166/wh.2014.027
http://www.ncbi.nlm.nih.gov/pubmed/25252347
https://doi.org/10.1002/j.1551-8833.2008.tb09704.x
https://doi.org/10.4269/ajtmh.16-0420
https://doi.org/10.4269/ajtmh.16-0420
http://www.ncbi.nlm.nih.gov/pubmed/27698273
https://doi.org/10.1016/j.watres.2020.115854
https://doi.org/10.1016/j.watres.2020.115854
http://www.ncbi.nlm.nih.gov/pubmed/32361348
https://doi.org/10.1016/j.watres.2020.116642
http://www.ncbi.nlm.nih.gov/pubmed/33246215
https://doi.org/10.1080/09593330.2021.1920626
http://www.ncbi.nlm.nih.gov/pubmed/33880970
https://doi.org/10.1038/s41545-021-00125-2
https://doi.org/10.1061/%28ASCE%29WR.1943-5452.0001118
https://doi.org/10.1016/j.watres.2006.10.027
http://www.ncbi.nlm.nih.gov/pubmed/17169396
https://doi.org/10.2166/hydro.2009.037
https://doi.org/10.2166/hydro.2009.037
https://doi.org/10.5194/hess-14-603-2010
https://doi.org/10.5194/hess-14-603-2010
https://doi.org/10.1080/15715124.2008.9635341
https://doi.org/10.1080/15715124.2008.9635341
https://doi.org/10.1007/s11157-021-09592-y
https://doi.org/10.1007/s11157-021-09592-y
https://doi.org/10.1080/1573062X.2019.1637002
https://doi.org/10.1080/1573062X.2019.1637002
https://doi.org/10.1016/j.cej.2020.126673
https://doi.org/10.2166/ws.2018.016
https://doi.org/10.1371/journal.pwat.0000040


28. Wadkar DV, Nangare P, Wagh MP. Evaluation of water treatment plant using Artifcial Neural Network

(ANN) case study of Pimpri Chinchwad Municipal Corporation (PCMC). Sustain Water Resour Manag.

2021; 7:1–14. https://doi.org/10.1007/s40899-021-00532-w

29. Wang D, Shen J, Zhu S, Jiang G. Model predictive control for chlorine dosing of drinking water treat-

ment based on support vector machine model. Desalination Water Treat. 2020; 173: 133–141. https://

doi.org/10.5004/dwt.2020.2414

30. Godo-Pla L, Emiliano P, Valero F, Poch M, Sin G, Monclus H. Predicting the oxidant demand in full-

scale drinking water treatment using an artificial neural network: Uncertainty and sensitivity analysis.

Process Saf Environ Prot. 2019; 125: 317–327. https://doi.org/10.1016/j.psep.2019.03.017

31. Deng Y, Zhou X, Shen J, Xiao G, Hong H, Lin H, et al. New methods based on back propagation (BP)

and radial basis function (RBF) artificial neural networks (ANNs) for predicting the occurrence of haloke-

tones in tap water. Sci Total Environ. 2021; 772: 145534. https://doi.org/10.1016/j.scitotenv.2021.

145534 PMID: 33571763

32. Gheibi M, Eftekhari M, Akrami M, Emrani N, Hajiaghaei-Kesheli M, Fatollahi-Fard A, et al. A Sustainable

Decision Support System for Drinking Water Systems: Resiliency Improvement against Cyanide Con-

tamination. Infrastructures. 2022; 7: 88. https://doi.org/10.3390/infrastructures7070088

33. Wang H, Koydemir HC, Qiu Y, Bai B, Zhang Y, Jin Y, et al. Early detection and classification of live bac-

teria using time-lapse coherent imaging and deep learning. Light Sci Appl. 2020; 9: 118. https://doi.org/

10.1038/s41377-020-00358-9 PMID: 32685139
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