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Abstract

Background

Snakebite envenoming is a neglected tropical disease that kills an estimated 81,000 to

138,000 people and disables another 400,000 globally every year. The World Health Orga-

nization aims to halve this burden by 2030. To achieve this ambitious goal, we need to close

the data gap in snake ecology and snakebite epidemiology and give healthcare providers

up-to-date knowledge and access to better diagnostic tools. An essential first step is to

improve the capacity to identify biting snakes taxonomically. The existence of AI-based

identification tools for other animals offers an innovative opportunity to apply machine learn-

ing to snake identification and snakebite envenoming, a life-threatening situation.

Methodology

We developed an AI model based on Vision Transformer, a recent neural network architec-

ture, and a comprehensive snake photo dataset of 386,006 training photos covering 198

venomous and 574 non-venomous snake species from 188 countries. We gathered photos

from online biodiversity platforms (iNaturalist and HerpMapper) and a photo-sharing site

(Flickr).

Principal findings

The model macro-averaged F1 score, which reflects the species-wise performance as aver-

aging performance for each species, is 92.2%. The accuracy on a species and genus level

is 96.0% and 99.0%, respectively. The average accuracy per country is 94.2%. The model
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accurately classifies selected venomous and non-venomous lookalike species from South-

east Asia and sub-Saharan Africa.

Conclusions

To our knowledge, this model’s taxonomic and geographic coverage and performance are

unprecedented. This model could provide high-speed and low-cost snake identification to

support snakebite victims and healthcare providers in low-resource settings, as well as zool-

ogists, conservationists, and nature lovers from across the world.

Author summary

Snakebite kills 81,000–138,000 people a year and disables another 400,000 mainly in tropi-

cal and subtropical Africa, Asia and Latin America. We must be able to correctly identify

biting snakes if we want to understand the diversity of snakes that threatens different pop-

ulations in endemic countries. This is key to improve snakebite epidemiological data and

to ensure the appropriate distribution of antivenoms in a given country and the specific

treatment of patients with these antivenoms when bitten by prevalent snakes. However,

snakes are diverse and healthcare providers lack the expertise to identify them, i.e., victims

carry the snake to the hospital or take photos. Here we used thousands of snake photos

from across the world and computer vision to develop an AI model to classify snakes. We

show for the first time that AI can accurately classify a large diversity of venomous and

non-venomous snakes from across the world including lookalike species from snakebite

endemic countries. This study sets the foundation for developing global, regional or

national snake identification support systems for snakebite epidemiologists and healthcare

providers, herpetologists, and the general public.

Introduction

More than five million snakebites occur globally every year. Venomous snakes cause about

half of these bites and kill 81,000–138,000 people and disable another 400,000 in low-resource

settings in Africa, Asia, and Latin America [1]. In 2019, the World Health Organization

(WHO) launched a roadmap to develop safe, effective, and accessible antivenoms and halve

snakebite envenoming (snakebite hereafter) burden by 2030 [1]. Achieving this also depends

on improving snakebite diagnosis at the snake species level and better understanding of snake

diversity and distribution in snakebite endemic areas [1–3]. Globally, there are over 3,900

snake species [4], about 700 of these are venomous and 292 are medically important venomous

species (MIVS) according to WHO [1].

We must correctly identify venomous and non-venomous biting snakes to ensure appropri-

ate distribution of antivenoms and treatment of victims where most needed [2, 3, 5–8]. Mis-

identification of biting snakes can result in imprecise, unnecessary, and potentially unsafe use

of antivenom [9, 10], while unnecessary or incorrect use of antivenoms wastes this scarce and

often expensive treatment [8, 11].

Molecular snake identification techniques (e.g., immunoassays that detect venom antigens

in snakebite victims) have limitations, and their deployment in low-resource settings remains

to be seen [2, 10]. When victims or relatives bring the snake to the health facility or provide a

photo, healthcare providers, who are generally not trained in herpetology, often struggle to
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taxonomically identify the snake [9, 12, 13]. They watch for victims’ symptoms to determine

the type of envenomation, infer the associated biting snake, and subsequently decide on the

treatment. This syndromic approach has limitations (e.g. syndromic misclassification) and can

be complemented by direct snake identification [5, 9, 14].

Computer vision techniques have been developed to identify birds (e.g., Merlin Bird ID app

recognizes over 7,500 species) and other animals like fish and butterflies [15], yet few initia-

tives seek to identify snakes and they are limited to certain taxonomic groups or geographic

areas (e.g., [16–18]). In this study, we developed and tested the performance of a computer

vision model to classify a large diversity of snakes using thousands of snake photos from across

the world publicly available on open biodiversity platforms (iNaturalist and HerpMapper) and

another online platform (Flickr)[19, 20]. We further showed the high average per-country

accuracy of this algorithm and its capability to distinguish sympatric lookalike species. We also

investigated the role of geographical information in fine-tuning the accuracy of snake species

identification and if the phenomenon of “unreasonable effectiveness” of noisy data for fine-

grained recognition applies to snake recognition [21, 22].

Methods

Snake photo datasets

We used a subset of the world’s largest snake photo dataset, described in detail in Durso et al.,

2021 [20], which we provided within the snake species identification challenge Snake-

CLEF2021. This challenge is part of LifeCLEF21, the Conference and Labs of the Evaluation

Forum (CLEF) that proposes data-oriented challenges related to the identification and predic-

tion of biodiversity [23].

The training dataset contains 386,006 photos belonging to 772 snake species from 188

countries and all continents except Antarctica. Most of the photos (87%) come from the online

biodiversity platforms iNaturalist (www.inaturalist.org) and HerpMapper (www.herpmapper.

org). For species with the fewest images, we further extended the dataset by scraping data from

Flickr (13% of the total). Although we attempted to reduce this, Flickr provided us with a het-

erogeneous and noisy source of data, including imprecise photo labels and photos of non-

snake subjects (e.g., captive snakes, photos of snake habitat).

Within the training set, 772 of the world’s 3,921 species (±20%) had at least ten photos, our

threshold for inclusion. The dataset has a marked long-tailed class distribution, where the

most frequent species (Thamnophis sirtalis) is represented by 22,163 photos and the least fre-

quent by just ten.

The 772 species are classified into 18 families (1–418 species per family in the training set)

and 269 genera (1–32 species per genus in the training set). They include 198 out of the 292

(68%) medically important venomous snake species (MIVS) according to WHO’s classifica-

tion [24] and 574 non-MIVS.

For testing, we used the test set from the SnakeCLEF2021 competition with 23,673 photos

submitted to the iNaturalist platform within the first four months of 2021, allowing us to com-

pare the performance with other studies (see S1 and S2 Tables for more details on the training

and testing datasets and S3 Table and S1 and S2 Figs for MIVS included in the datasets).

Considering that all snake species have distinct, largely stable geographic ranges, with a

maximum of 126 species of snakes occurring within the same 50×50km2 area [25], geographi-

cal information could play a crucial role in correct snake species identification. To evaluate

this, we gathered two levels of geographical label (i.e., country and continent) for approxi-

mately 87% of the data.
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The vast majority (77%) of photos came from the United States and Canada, with 9% from

Latin America and the Caribbean, 5.7% from Europe, 4.5% from Asia, 1.8% from Africa, and

1.5% from Australia/Oceania. Bias at smaller spatial scales undoubtedly exists as well [20],

largely due to where participants in citizen science projects and other snake photographers are

concentrated. Nevertheless, snake species from nearly every country were represented, with

46/215 (21%) of countries having all of their snake species represented, mostly in Europe.

Nearly half of all countries (106/215; 49%) had more than 50% of their snake species repre-

sented (Fig 1).

A small proportion of photos (ca. 1–2%), particularly from Flickr, show captive snakes that

are kept outside of their native range (e.g., North American Pantherophis guttatus in Europe

or AustralianMorelia viridis in the USA). We opted to retain these for three reasons:

1. Users of an automated identification system may wish to use it on captive snakes (e.g., in

the case of customs seizures) [27].

2. Bites from captive snakes may occur (although the identity of the snake would normally be

clear in this case) (e.g., [28]).

3. Captive snakes sometimes escape and can establish introduced populations outside their

native range (e.g., [29]).

To support further studies related to the worldwide performance of the AI model, we cre-

ated a Mapping Matrix (MM) describing country-species presence to allow better worldwide

regularization, based on The Reptile Database [4].

MMcs ¼
1; if species S 2 country C

0; else
ð1Þ

(

The Artificial Intelligence module

The main building block of the AI module is a recent neural network architecture–Vision

Transformer (ViT)–with state-of-the-art image categorization performance [30]. Apart from

the convolutional neural networks, the ViT avoids convolutional layers while interpreting an

image as a sequence of patches and processing it by a standard Transformer encoder like natu-

ral language processing.

This section describes the full training and evaluation procedure, including the training

strategy and image augmentations. We include the description of used principles that helped

to increase the model performance. We include the link to the open-sourced code, trained

checkpoints and images, allowing reproducibility for all provided metrics.

Training strategy

The model was initialized from a publicly available checkpoint (GitHub) and further fine-

tuned in two consecutive stages. The PyTorch deep learning framework within the 21.07 NGC

Docker container was used. All images were resized to the input size of 224 x 224 or 384 x 384

to match the input resolutions of the pre-trained models.

Stage1: Starting from the ImageNet-1k pre-trained checkpoint, we trained the model for 50

epochs. In other words, each image in the training set was feed-forwarded 50 times. For opti-

mization, Stochastic Gradient Descent with momentum set to 0.9 was used. Stochastic Gradi-

ent Descent is an optimization algorithm that iteratively modifies the AI model parameters by

measuring discrepancies between predicted and correct species names. We used an Adaptive

Learning Rate (LR) strategy to schedule the learning rate, i.e., starting LR of 0.01 was reduced
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by 10% on every second epoch without validation loss reduction. The loss was calculated as

Softmax Cross Entropy. To allow better convergence, we accumulated gradients to match a

mini-batch size of 256.

Stage2: We used both the training and validation set to fine-tune the model in the second

stage. In addition, we have substituted the SoftMax Cross Entropy with the Focal Loss that

focuses on the hard examples [31]. With that, we prevent the common species with the most

samples from overwhelming the model during training. Next, we used the One Cycle Learning

Rate Policy, proposed by Smith et al. (2019) [32], to fine-tune the model for an additional 20

epochs.

Data cleaning

To increase the number of samples for species with few images in online biodiversity plat-

forms, we added weakly labelled data from Flickr (i.e., data with a relatively high number of

incorrect species labels). This procedure is commonly used in practice to maximize the num-

ber of samples for rare classes and to allow better performance overall as long as the number of

incorrect labels does not overwhelm the classifier. To test if the “unreasonable effectiveness” of

the weakly labelled data for fine-grained recognition applies to snake recognition as well [21,

22], we trained the ViT-Base/32–224 on the clean (without Flickr data) and full set using the

Stage1 training strategy. The experiment results show that including noisy data for rare species

improves the performance in all measured metrics (Table 1). Learning from that, we use the

Full set to develop the recognition system.

Fig 1. Percent of snake species represented in the training dataset for each country. The map was drawn using R

package rworldmap v 1.3.6 [26]. See S1 Data for underlying values.

https://doi.org/10.1371/journal.pntd.0010647.g001

Table 1. Performance comparison for two ViT-Base/32 models trained on the SnakeCLEF2021 dataset and its “clean” subset.

F1 Country F1—Species Top1 Accuracy—Species F1—Genus Top1 Accuracy—Genus

Clean set 68.6% 69.7% 82.3% 72.5% 90.0%

Full set 75.9% 74.2% 88.2% 77.9% 93.4%

https://doi.org/10.1371/journal.pntd.0010647.t001
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Data augmentations

To prevent overfitting–a state of the model when performing nearly perfect on training data

but badly on test data–and to increase the regularization capability of the model, we utilized

several augmentation techniques from the Python Albumentations library [33] (Fig 2). During

training, we used:

• RandomResizedCrop: randomly crops 70–100% from the original image,

• Horizontal Flip: flips the image with 50% probability,

• Vertical Flip: flips the image with 50% probability,

• RandomShiftScaleRotate: shifts, scales and rotates the image with 75% probability, and upper

limits of ±6.25%, ±25%, and ±45˚ respectively,

• JpegCompression: changes the image quality with 50% probability on a scale of 50–100,

• Blur: using a 7x7 linear filter to blur image with 10% probability,

• RandomBrightnessContrast: adjusts the contrast and brightness with 30% probability by a

random factor in a range -0.2–0.2,

• HueSaturationValue: changes hue, saturation and value of the input image with 20% proba-

bility and random limits of -20–20, -30–30, and -20–20%, respectively, and

• ImageNormalization: colour values are re-scaled from 0 − 255 to 0 − 1, and normalized by

mean (0.5) and std (0.5) in all channels.

Test-time augmentation

The test-time augmentation (TTA) is a simple procedure commonly used to improve the per-

formance of the neural network. Instead of feeding the model with a single photograph to get

the prediction, a batch of augmented images is created and feed-forwarded. In our case, we

create a batch of 4 with (i) original image, (ii) horizontally flipped image, (iii) vertically flipped

image, and (iv) image rotated by 180˚. All four probabilities are averaged to get the prediction.

Such a procedure helps to improve the recognition performance by allowing the algorithm

to see the original image on different scales or observed from different angles. The results

showing the impact of the TTA are presented in Table 2.

Fig 2. Examples of augmented images. The first image from the left is the original image. Top: image by chiuluan,

iNaturalist 207060926 (CC-BY); Bottom: image by Alex Karasoulos, iNaturalist 207359674 (CC-BY).

https://doi.org/10.1371/journal.pntd.0010647.g002
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Exploiting geographic information

We tested and utilised two approaches for the integration of geographic information—binary

masking, which automatically removes all the irrelevant species for a country from the predic-

tion and a simple statistical approach based on the assumption that the class posterior given

the image I and location L can be estimated as:

P SjI; Lð Þ ¼
PðSjIÞ � PðSjLÞ

PðSÞ
; ð2Þ

where p(S) is the species prior in the training set, and the conditional probability P(S|L) is cal-

culated as the relative frequency of species S within the given location.

The first scenario, where we removed all the irrelevant SoftMax values based on the species-

presence knowledge, helped us to increase the performance by a significant margin; 2.93% and

3.11% in F1 Country and F1—Species, respectively (Table 3).

Evaluation Protocol

To assure focus on worldwide performance, we defined the macro F1 country performance

(Macro F1C) as the main metric. We calculate it as the mean of country F1 scores:

Macro F1c ¼
1

N
PN

c¼1
F1c; F1c ¼

1
PN

s¼1
MMcs

PN
s¼1

F1s �MMcs ð3Þ

where C is country index, S is species index, F1C is the country performance, and MMCS is the

mapping matrix describing species-country presence that allows better worldwide regulariza-

tion; extracted from the August 2020 release of The Reptile Database [4].

To get the F1S we use the following formula for each species:

F1s ¼ 2 �
Ps � Rs
Ps þ Rs

; Ps ¼
tps

tps þ fps
; Rs ¼

tps
tps þ fns

ð4Þ

To allow deeper comparison on different levels, we also measure the Top1 Accuracy

(Correct Assessments
All Assessments ) and the Macro F1 score. The Macro F1 score is calculated as the mean of all F1S

scores:

Macro F1 ¼
1

N
PN

s¼1
F1s; ð5Þ

where S is the species index and N the number of species. Final Macro F1 is calculated by

Table 2. Test time augmentations experiment.

F1 Country F1—Species Top1 Accuracy—Species F1—Genus Top1 Accuracy—Genus

Baseline 91.1% 88.8% 94.1% 93.2% 98.4%

Test-time augmentation 91.3% 89.1% 95.7% 92.5% 98.5%

https://doi.org/10.1371/journal.pntd.0010647.t002

Table 3. Achieved performance on the SnakeCLEF2021 test set using different locational data and metadata integration method.

F1 Country F1—Species Top1 Accuracy—Species F1—Genus Top1 Accuracy—Genus

Model with Test-time augmentation 91.3% 89.1% 95.2% 92.5% 98.5%

Country Prior 90.0% 89.1% 95.4% 91.5% 98.6%

Continent Prior 93.2% 90.7% 95.1% 95.6% 98.9%

Presence Masking 94.2% 92.2% 96.0% 94.9% 99.0%

https://doi.org/10.1371/journal.pntd.0010647.t003
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computing the F1 score for each species as the harmonic mean of the species Precision (PS)
and the Recall (RS).

Results

Model overall performance

We tested the performance of the model on an independent dataset comprising 23,673 photos.

The model is based on the novel neural network architecture–Vision Transformer–and was

optimized using various data augmentations (i.e., random crop, horizontal/vertical flip, ran-

dom rotation, etc.). In addition, the test-time augmentation procedure is used in the produc-

tion environment. We also incorporated geographic metadata information, which increased

the system’s performance by a significant margin, reducing the relative error rate by 33.3%.

The model accurately classifies testing images at the species and genus levels (Table 4). The

model macro-averaged F1 score, calculated as the mean of all species F1 scores, is 92.2% and

the top-1 accuracy is 96.0%. For genus recognition, the model achieves a macro-averaged F1

score of 94.9% and a 99.0% top-1 accuracy. The macro F1 country performance, calculated as

the mean of country F1 scores, is 94.2%.

Relationship between number of training images per species and F1 score

There is a logarithmic relationship between the number of training images per species and the

F1 score (Fig 3). Species that stand out as being relatively inaccurately identified for their quan-

tity of training data are mostly those which have been recently delineated primarily using

molecular methods and geographic location rather than morphological characteristics, and

previously belonged to more widespread species complexes, such as Agkistrodon piscivorus/A.

Table 4. Overall performance of the model.

Test Set F1 Country F1—Species Top1 Accuracy—Species F1—Genus Top1 Accuracy—Genus

SnakeCLEF2021 94.2% 92.2% 96.0% 94.9% 99.0%

https://doi.org/10.1371/journal.pntd.0010647.t004

Fig 3. Distribution of F1 scores according to the number of training images per species. See S2 Data for underlying

values.

https://doi.org/10.1371/journal.pntd.0010647.g003
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conanti, Boa constrictor/B. imperator, and Salvadora hexalepis/S. deserticola. Durso et al.

(2021) [34] found the same and noted that training images for these species complexes are

much more likely to be mislabeled due to confusion over how best to differentiate the putative

species, especially from photos that lack geographic locality information. From the probabilis-

tic point of view, the species with fewer training images will normally be mistaken for those

with more.

Species having good accuracy despite relatively low quantity of training data include diverse

species from different clades and continents. For instance, Bandy-bandy (Vermicella annu-
lata), an Australian burrowing elapid with bold black-and-white bands, had an F1 = 1 and

only 522 training images. Although there are other banded snakes in Australia [35], V. annu-
lata is among the most distinctive Australian snake species and is also notable for its body-

bridging defensive behaviour [36], which might provide unique features (e.g. particular pos-

tures) that the algorithm could detect. However, there are five other species in the genus Ver-
micella, all of which are similar in appearance but none of which met the minimum threshold

of ten training images, and we suspect that including these would produce at least occasional

confusion among them, lowering the F1 for V. annulata. The same applies to many other

diverse genera represented in our training data by only one species that met the 10-image

threshold.

Country-level performance of the model

We assessed the country-level performance of the model, taking into account the list of snake

species occurring in each country. The model’s country-wise F1 is above is above 70% in 97%

of countries, above 90% in 88% of countries, and above 95% in 56% of countries (Fig 4).

There is a trade-off between the model coverage and performance that varies by region.

Focusing on the two continents with the highest snakebite burden, we found that, in Asia,

countries with higher coverage have higher performance on average, whereas in Africa, perfor-

mance peaks at intermediate coverage (Fig 5).

Comparing model performance between MIVS and non-MIVS species

The 772 species used to train the model include 198 MIVS and 574 non-MIVS species. We

compared the model performance in identifying MIVS and non-MIVS species (Fig 6). The

model performed equally at identifying MIVS and non-MIVS, with a similar F1 score distribu-

tion for each category (average ± S.D. F1 = 95 ± 17% for MIVS vs 93 ± 22% for non-MIVS;

p = 0.61).

Model performance in distinguishing snake lookalikes

The training dataset includes many similar-looking species, including several non-MIVS spe-

cies that have evolved to mimic MIVS species. These species usually occur in the same geo-

graphic area as each other and resemble one another so closely that they are often confused,

even by experts [9, 37]. We assessed the model performance in distinguishing selected look-

alike species groups occurring in Southeast Asia (Fig 7) and sub-Saharan Africa (Fig 8).

In Southeast Asia, one of the most difficult medically-relevant snake identification chal-

lenges is telling apart venomous kraits (genus Bungarus) from non-venomous wolfsnakes

(genus Lycodon). Confusion between these two groups of snakes has led to unnecessary or

delayed use of antivenom, resulting in victim death [5, 9, 38]. Whereas >91% of community

members in southern Nepal confused these two groups [39], our model accurately classified all

testing photos at the genus level (although it did confuse some species within each genus). Sev-

eral species in each genus remain unrepresented in the training data.

PLOS NEGLECTED TROPICAL DISEASES An AI model to identify snakes from across the world and support snakebite diagnosis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010647 August 15, 2022 9 / 19

https://doi.org/10.1371/journal.pntd.0010647


In Sub-Saharan Africa, similar-looking venomous genera (Bitis and Echis) and mildly ven-

omous (Causus) or non-venomous (Dasypeltis) lookalikes are frequently confused [37]. Our

model accurately classified all testing images at the species level. However, few testing photos

were available for many taxa, and several species in each genus remain unrepresented in the

training data.

Discussion

This study shows for the first time that AI (i.e., computer vision and fine-grained image classi-

fication) can identify a large diversity of venomous and non-venomous snakes at a high level

Fig 4. Maps of average F1 score by country (A All species, B MIVS only). Countries and territories with the lowest

overall F1 scores for all species are Martinique (36%), Haiti (40%), Dominica (62.5%), St. Lucia (62.5%), Aruba (68%),

and Papua New Guinea (74.8%). The map was drawn using R package rworldmap v 1.3.6 [26]. See S3 and S4 Data for

panels A and B underlying values.

https://doi.org/10.1371/journal.pntd.0010647.g004
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of accuracy. The taxonomic and geographic coverage and the performance of the computer

vision model proposed are unprecedented: 772 snake species and 269 genera from 188 coun-

tries on six continents and an F1-macro score of 92.2%, with a species and genus level accuracy

of 96.0% and 99.0%, respectively. This study sets the foundation for developing global, regional

or national snake identification systems for herpetologists, epidemiologists and healthcare pro-

viders, and the general public, and highlights the importance of AI, open data, and crowd-

sourcing to tackling snakebite.

For developing this new AI model, we used snake photos from nearly every country (188

out of 215). This global approach contrasts with previous studies focused on a specific country

Fig 5. Scatterplot of Asian and African countries by coverage and F1 score. See S5 Data for underlying values. For

other continents, see S3 Fig. and interactive online version at https://chart-studio.plotly.com/~amdurso/6/#/.

https://doi.org/10.1371/journal.pntd.0010647.g005

Fig 6. Comparison of F1 score distribution between non-MIVS (574 species) and MIVS (198 species). See S6 Data

for underlying values.

https://doi.org/10.1371/journal.pntd.0010647.g006
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(India, Indonesia, Iran, Malaysia, or Sri Lanka) (e.g., [16, 18]), a geographic area (Galapagos

Islands) [17], or a limited number of species (e.g., 6 in Rajabizadeh et al. (2021) [18], 9 in Patel

et al. (2020) [17], 22 in Amir et al. (2016) [16]). AI-based snake photo classification is challeng-

ing, mainly because of the large diversity of snakes and the often-limited number of photos per

class. Thus collaborative approaches and open data sharing, like in biodiversity platforms such

as HerpMapper and iNaturalist, are essential. These platforms also provide promising AI mod-

els for classifying snakes, although they do not deliver snake-specific performance metrics.

We developed part of our model collaborating with an international community of AI sci-

entists via AICrowd and the SnakeCLEF2021 challenge [40], and building on solutions for

Fig 7. Computer vision model performance for identifying lookalike venomous and non-venomous snake species in Southeast Asia (Bungarus spp. vs.

Lycodon spp). All species in these genera from the training data were included. A Confusion matrix of the classification results of the model on lookalike snake

species with the percentage (blue colour code) of correctly (diagonal cells) and incorrectly (off-diagonal cells) classified images, B Geographic range of the

relevant snake genera based on [25], C Representative photos of some of the lookalike snake species tested with the model. The map was drawn using R package

rworldmap v 1.3.6 [26]. See S7 Data for panel A underlying values.

https://doi.org/10.1371/journal.pntd.0010647.g007
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classifying fungi [41]. Our model is based on Vision Transformer, the state-of-the-art deep

neural network, and uses simple and replicable training procedure and unique geographic

data exploitation. With an F1 Country of 94.2%, F1 species of 92.2%, and Top1 accuracy of

96.0%, there is, to our knowledge, no other AI-based system offering similar performance,

even for a smaller number of snake species.

The average model accuracy per country is above 90% in 88% of countries. Accurate taxo-

nomic identification of snakes is critical to improving snake ecology and snakebite epidemiol-

ogy data in endemic countries. Understanding the diversity of snakes and which snakes bite

Fig 8. Computer vision model performance for identifying lookalike venomous and non-venomous snake species in Sub-Saharan Africa (Bitis spp. vs.

Echis spp. vs. Causus spp. vs. Dasypeltis spp.). All species in these genera from the training data were included. A Confusion matrix of the classification results

of the model on lookalike snake species with the percentage (blue colour code) of correctly (diagonal cells) and incorrectly (off-diagonal cells) classified images,

B Geographic range of the relevant snake genera based on [25], C Representative photos of some of the lookalike snake species tested with the model. The map

was drawn using R package rworldmap v 1.3.6 [26]. See S8 Data for panel A underlying values.

https://doi.org/10.1371/journal.pntd.0010647.g008
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locals is the basis for more precise and cost-effective distribution of often-limited national

stock of antivenoms. This is also the rationale for WHO’s “Snakebite Information and Data

Platform” and the associated sub-Saharan Africa antivenom stockpile programme [24].

Snakebite is a health emergency requiring rapid transfer of the victim to a healthcare facility

(e.g., neurotoxic envenomation can produce generalized paralysis, respiratory arrest, and

death in few hours). Precise and rapid snake identification could help healthcare providers

anticipate victim signs and symptoms, complement the commonly used syndromic approach,

make good choices on the use of antivenom or plan victim transfers depending on antivenom

availability. Accurate snake species identification is particularly important in snakebite

endemic countries and regions where species-specific monovalent antivenoms are used to

treat victims. Our AI model distinguishes lookalike venomous and non-venomous species

often confused in clinical practice with potentially severe implications for the victim (e.g.,

wolfsnakes (Lycodon spp.) and kraits (Bungarus spp.)) [5, 9, 38]. Existing snake identification

techniques (e.g. immunoassays, PCR-based tests) require laboratory capacity and lengthy and

costly procedures and are thus not yet adapted to low-resource snakebite endemic countries

[10]. In certain countries, healthcare providers rely on local, national and even international

herpetologists for identifying snakes brought to the health facility or photographed by the vic-

tims or relatives, as recommended by WHO (e.g., [14]). Although some specific platforms pro-

vide snake identification support (e.g., Sri Lanka (www.snakesidentification.org) [42],

Thailand (www.thailandsnakes.com/thailand-snake-id/) [24]), an informal and unsecured

process has emerged among healthcare providers, who share snake photos with other medics

or herpetologists for identification via email, WhatsApp or even Facebook. Herpetologists usu-

ally provide their expertise on a volunteer basis and their availability and reactivity may be lim-

ited. In this context, AI could deliver simple, continuous, instantaneous, and low-cost snake

identification to complement herpetologists [37, 43] and support healthcare providers and

snakebite victims, especially considering the rapidly growing internet and mobile technology

penetration in many snakebite endemic countries [44] (e.g., India). Improving the capacity of

communities at risk of snakebite, conservationists, nature lovers, among others groups, to

identify and learn about snakes could both help prevent snakebite envenoming (e.g., by recog-

nising venomous snakes) and protect snakes (e.g., fewer snakes will be killed out of fear or

ignorance).

Other professional groups, such as snake rescuers, veterinarian practitioners confronted to

snakebite in companion and livestock animals [45], and wildlife trade inspectors (e.g., 6.3 mil-

lion snakes were traded globally between 1975 and 2018 [27]), or biology students, snake

enthusiasts and travellers, could also benefit from this AI.

Our study has several limitations. First, the snake photo dataset used to train the model

does not yet cover the whole species diversity of some highly biodiverse regions: the mean per-

centage of species covered per country in Asia is 57%, 44% for Oceania, 41% for Latin Amer-

ica/Caribbean, and 34% for Africa. We have shown that online communities of snake

enthusiasts and herpetologists can contribute large volumes of geo-tagged snake observations

[19] and that aggregating photos among online data sources brought our team to the leading

edge of global snake image datasets, with almost 80% of the world’s species represented by at

least one image [20]. Yet, only 20% of the world’s species met our 10-image threshold for

inclusion in the training dataset, highlighting the extremely long-tailed distribution of photos

per species. Although online data sets continue to grow, connecting with difficult-to-access

online (e.g. sub-communities of Facebook, Field Herp Forum) and offline (e.g. private What-

sApp snake identification chat groups, private or natural history museum image collections)

communities will allow us to progress in snake identification. The species under-represented

in our snake photo dataset are shown in S1 Fig and S3 Table and the most-wanted species
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globally in [20]. To help improve the model accuracy and coverage, we encourage professional

herpetologists and snake enthusiasts with photos of these species or missing species to submit

them to The Reptile Database [4] or the citizen science biodiversity platforms iNaturalist and

HerpMapper. Second, the snake photos used to evaluate the model performance (iNaturalist

photos) may be "easy" for the algorithm to correctly identify and not reflect the kinds of photos

that are usually taken in the context of a snakebite event (e.g., the biting snake has been killed

and its head smashed, the photo is blurred, only part of the snake’s body is visible, etc.). Fur-

ther research is needed to test this AI snake identification system in the field. Third, we com-

pared a limited number of lookalike species that we selected based on our literature review [9]

and discussions with clinicians (GA). Further studies need to include and more systematically

compare lookalike snake species occurring at the global scale.

Conclusion

We have built and openly shared an international AI model for the automatic identification of

snakes, setting the basis for further machine learning research and AI applications to tackling

snakebite and other neglected tropical diseases in low-resource settings. The power of AI must

be embraced and used safely and equitably to improve health and wellbeing of the poorest

communities of the world.
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Castañeda.

Writing – review & editing: Isabelle Bolon, Lukáš Picek, Andrew M. Durso, Gabriel Alcoba,
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41. Picek L, Šulc M, Matas J, Heilmann-Clausen J, Jeppesen TS, Lind E. Automatic Fungi Recognition:

Deep Learning Meets Mycology. Sensors. 2022; 22(2):633. https://doi.org/10.3390/s22020633 PMID:

35062595

42. Maduwage K, Karunathilake P, Gutiérrez JM. Web-based snake identification service: A successful

model of snake identification in Sri Lanka. Toxicon. 2022; 205:24–30. https://doi.org/10.1016/j.toxicon.

2021.11.007 PMID: 34774917

43. Ruiz de Castañeda R, Grey F, Williams DJ. Citizen surveys could map snakebite risks. Nature. 2019;

571(7766):478–.

44. We are social 2020. [cited 2022 February 02]. Available from: https://wearesocial.com/digital-2020.

45. Bolon I, Finat M, Herrera M, Nickerson A, Grace D, Schütte S, et al. Snakebite in domestic animals:
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