

Development of an all-in-one transportable clinical bacteriology laboratory: feedback from testing a Mini-Lab prototype

MSF Scientific Days 2019

Jean-Baptiste Ronat¹, Alessandra Natale¹, Alice Rochard¹, Baptiste Boillot¹, Julie Hubert¹, Marion Ducasse¹, Lea Courtier², Albane Mazoyer¹, Olivier Vandenberg³, Céline Mateev⁴, Sien Ombelet⁵, Jan Jacobs⁵

¹Médecins Sans Frontières (MSF), Paris, France; ²MSF Logistique, Bordeaux, France; ³ Laboratoire Hospitalo-Universitaire Bruxelles-Université Libre de Bruxelles, Brussels, Belgium; ⁴ Ecole Nationale Supérieur des Arts et Métiers, Paris, France; ⁵ Institute of Tropical Medicine, Antwerp, Belgium

Antibiotic resistance (ABR) in the world

ABR is growing in severity; all regions of the world are affected to varying extents (Becker, J. U. et al. 2009)

- WHO has identified ABR as one of the major threats to global health (WHO, 2014)
- Many of the gaps in ABR surveillance exist where MSF operations are active
- ABR puts patient at risk and jeopardizes MSF and other humanitarian medical activities
- Sepsis emerged as new threat within MSF populations

Clinical bacteriology lab: cornerstone to improve our medical interventions

- Today, the only way to diagnose sepsis and survey resistance trends in our population is by implementing clinical bacteriology laboratories (CBL).
- WHO recommends massive implementation of clinical bacteriology in Low Resource Settings (LRS). (WHO, 2014)

• MSF Medical Director platform supports the necessity to further invest in CBL

Implementing CBL in LRS implies serious challenges:

Inherent limitations of infrastructure and budget

Power supply Climate, Humidity, Costly methods

dust control

Conventional methods not adapted to low resources

Logistic constraints and complexity, etc.

Too few RDTs exist (Strepto A, Salmonella, etc.) no multiplex RDTs

Logistical problems

Steady supply, availability, quality assurance and coldchain requirements for shipment and storage

Lack of skilled human resources

Paucity of adequate reference sources and training materials

Difficulty to integrate microbiology into clinical practices

Ombelet, S. and Ronat, JB et al. (2018) 'Clinical bacteriology in low-resource settings: today's solutions', The Lancet Infectious Diseases, 3099, pp. 1–11. doi: 10.1016/S1473-3099(18)30093-8

As the next-generation diagnostics adapted to LRS are unlikely to become available quickly,

MSF has decided to work on the **development** of a, <u>quality-assured</u>, <u>cost efficient</u>, <u>all-in-one</u> and <u>transportable</u> <u>clinical bacteriology laboratory</u>.

- Enabling diagnosis of sepsis, antibiotic sensitivity testing and surveillance of antibiotic resistance
- Maximizing ease of use and clinical relevance with harmonized and simplified manual techniques
- To be used by trained but non-expert users, and respond to clinical needs at MSF field sites.

02 Methods

Strong governance, mixed group of experts, key industrial partnerships

Steering committee

Chair: Clair Mills (DirMed OCP)

members from different MSF
Operation centers, Internationnal
office

Scientific committee

Chair: Olivier Vandenberg (LHUB-ULB)

18

Expert from MSF and non MSF

- Microbiologist
- Epidemilogist
- Infectious diseases MD
- Bio-medical
- In-Vitro Diagnostic expert
- Ergonomist

Partners

02 Methods A USER-CENTERED & ITERATIVE DEVELOPMENT

Objective: Assessing ergonomics, appropriateness and user-friendliness of the setup, diagnostic testing and user guidance tools

Context:

- January 2019, assembled all components into full working prototype
- Installed at Laboratoire Hospitalo-Universitaire, Brussels.

Set-up:

- Simulation of routine laboratory work, with 3 non-microbiologist laboratory technicians and short training
- Carrying out sample processing and test procedures, on 17 simulated samples of known bacteria for 4 days
- Evaluator observation, user questionnaires and final group interview to collect feedback
- Using Likert scale *

02 Methods TESTING THE PROTOTYPE IN A LAB

Ethics:

This innovation project did not involve human participants or their data; the MSF Ethics Framework for Innovation was used to help identify and mitigate potential harms.

03 Results

ASSEMBLY OF THE KIT – BOX/BENCH FURNITURE

- 6 foldable, sturdy transport boxes (~120kg each)
- Transformable into standalone laboratory benches.
- With all materials packed inside boxes
- Plug and play modules, bench's with leveling features, washable surfaces
- Light integrated, fit into 20 m² room

03 Results SET UP OF THE LABORTORY SPACE

03 Results ASSEMBLY OF THE KIT – MATERIAL & EQUIPMENT

- 35 reagents and ready to use tests, 45 consumables Among them, 7 tests have been customized / developed
- Shelf life ≥ 12 months (except 3)
- 14 reagents/ tests under cold chain

Equipment/IT

2 incubators, 1 table top autoclave, 1 camera based microscope, 1 digital micro-plate reader.

Among them, 2 have been customized / developed

- 20 small laboratory devices Among them, 3 were specifically developed / adapted
- User-friendly IT hardware (tablets, touch-screen)
- Tailor-made simple Laboratory Information System based on open source nocode platform – workflow management user support

The devices were chosen or developed on the basis of 16 technical requirement / market reviews and 14 Scientific Literatures reviews.

03 Results GUIDING USER WITH GRAPHIC DESIGN

03 Results

USER EXPERIENCE FEED BACK – evaluations

- 135 observations
- 14 questionnaire administered (installation, comfort, use of devices, etc.) with 152 questions
 - Overal mean likert scale on **user experience** = 6 (scale of 1 strongly disagree to 7 strongly agree)
 - Poorest note of 2/7 on the capacity to work together within the lab space
 - Highest note of 7/7 on individual work comfort, design and intuitiveness of the different systems

03 Results USER EXPERIENCE FEED BACK - synthesis

Topic	Remarks	Actions
Assembly	 Outside surface - not easy to clean Assembly process is quite intuitive 	Change to be made in final product
Boxes/ bench design	 Weight is quite important. Ergonomics of the bench is great, very comfortable 	Change to be made in final product
Task organization	Optimize workbench space if many tasks need to be done at the same time by different lab techs	Try a new setup for first field pilot
Sign posting	 Make writing bigger stickers. Accompaniment with visual pictograms is really valuable 	Adapted pictograms
Analytical process	 Adjustment of some part of the process to be made High usability and user friendliness of the different devices 	Adjustment made for field pilot

04 Conclusions

- Reached the testing phase of a prototype including all components.
- Test users have responded positively with regard to ergonomics of the bench and modules, tests and pictogram-based guidance.
- Module weight and task organization within a confine space has emerged as a constraint.
- Provided us critical information for our iterative design process.
- Feasible, useful improvements will be made before the first Mini-Lab field evaluation, planned at an MSF-supported burn centre in Haiti, June 2019.

Merci

