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Estimating and predicting 
snakebite risk in the Terai region 
of Nepal through a high‑resolution 
geospatial and One Health 
approach
Carlos Ochoa1,2*, Marta Pittavino3, Sara Babo Martins1, Gabriel Alcoba1,4,5, Isabelle Bolon1, 
Rafael Ruiz de Castañeda1, Stéphane Joost6, Sanjib Kumar Sharma7, François Chappuis5,8 & 
Nicolas Ray1,2

Most efforts to understand snakebite burden in Nepal have been localized to relatively small areas 
and focused on humans through epidemiological studies. We present the outcomes of a geospatial 
analysis of the factors influencing snakebite risk in humans and animals, based on both a national‑
scale multi‑cluster random survey and, environmental, climatic, and socio‑economic gridded data for 
the Terai region of Nepal. The resulting Integrated Nested Laplace Approximation models highlight 
the importance of poverty as a fundamental risk‑increasing factor, augmenting the snakebite odds 
in humans by 63.9 times. For animals, the minimum temperature of the coldest month was the most 
influential covariate, increasing the snakebite odds 23.4 times. Several risk hotspots were identified 
along the Terai, helping to visualize at multiple administrative levels the estimated population 
numbers exposed to different probability risk thresholds in 1 year. These analyses and findings could 
be replicable in other countries and for other diseases.

Currently, it is estimated that 50 people worldwide are bitten by a snake every five minutes, and one of them 
will  die1. From the approximate 5.4 million people bitten by snakes globally every year, up to 2.7 million are 
envenomed, leading to more than 400,000 disability cases and between 81,000 and 138,000  deaths2–4. Affected 
populations often lack appropriate access to  healthcare5. In addition to the devastation caused to individuals, 
families, and communities, snakebite envenoming also causes important losses of  livestock6, which have sub-
stantial livelihood impacts for the affected  households7.

In rural, agricultural populations, poverty has been extensively documented as a crucial factor linked to high 
snakebite incidence. Indeed, Nepal is a primarily agricultural country, with more than 65% of the population 
working in  agriculture8. More than 50% of its population lives in the Terai region, the south  plains9 where most 
of Nepal’s agricultural activity is  concentrated10. This area is characterized by a high snakebite incidence both in 
humans and animals, recently estimated at 261 cases per 100,000 people a year, and up to 202 cases per 100,000 
animals a year depending on  species11.

In Nepal, as in many endemic countries, both the public and the medical personnel lack awareness of and 
education about snakebite, which hinders victims in seeking appropriate medical  treatment10. Regarding domestic 
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animals, it is even rarer for owners to seek and access veterinary services that can treat snakebite, relying more 
often on traditional  medicine12.

Geospatial approaches have recently allowed direct and indirect estimation of the  present13–16 and  future17 
risk of snakebite and other spatially distributed health and social  problems18,19. However, countrywide studies 
using spatial epidemiology, as done in  Bangladesh20 and Sri  Lanka21, still remain rare despite being invaluable to 
understand the burden of snakebite at national scale. Similar methods from a One Health perspective, incorporat-
ing the risks and consequences of snakebite for domestic animals, are almost non-existent6. Until recently, previ-
ous studies in Nepal analysed the incidence of snakebite at district and sub-district level, either as community 
 survey22 or based on medical  records23,24, but none have addressed the incidence or risk of snakebite at a national 
or subnational scale. Recently, human and animal snakebite incidences were analysed nationally for the  Terai11,12, 
and here we analyse geospatially the risk of snakebite and the factors influencing it in humans and animals.

The World Health Organisation and the international scientific community have recognized the incom-
pleteness of the data associated with  snakebite4,25, emphasizing the need to understand its intrinsic risk and 
to inform relevant stakeholders about it. It has been also emphasized that further research on  ecological26 and 
environmental risk factors is necessary to develop better snakebite risk-reduction strategies, especially in places 
where other measures cannot be readily  implemented4. Generating this knowledge at high spatial resolution is 
a keystone for further actions in education, prevention, accessibility to treatment, allocation of resources, com-
munity empowerment, and health systems reinforcement in Nepal and other endemic countries.

In this study, we applied a hierarchical Bayesian, Integrated Nested Laplace Approximation (INLA) methodol-
ogy to spatially analyse snakebite risk in a model with two variations. In the first, we estimated the factors influ-
encing snakebite risk for humans and domestic animals using both highly granular data from a recent Terai-wide 
multi-cluster random  survey27 and geospatial gridded layers of environmental, geographic and socio-economic 
factors. In the second variation, and considering that the covariates from the aforementioned survey could not 
be imputed to any place in the Terai, we used exclusively geospatial gridded layers not only to estimate, but also 
to predict the snakebite risk for humans at high spatial resolution.

Results
In total, 12,998 observations (households), were available and contributed to valid data, including 154 (1.18%) 
human snakebite cases, and 91 (0.7%) domestic animal cases (all species). From the 249 clusters surveyed, 15 
could not be included in the analysis due to unmatched geographic coordinates. For the full epidemiological 
analyses in humans and animals, see Alcoba et al.11 and Bolon et al.12.

Modelling of snakebite risk in humans. The covariates selected for the final model of snakebite risk in 
humans were: food storage, straw storage, and sleeping on the floor, as well as poverty, quantified using the Pov-
erty Probability Index (PPI)28, the average annual Normalized Difference Vegetation Index (NDVI), and distance 
to water. These covariates, together with the spatial random effects, were integrated in a hierarchical Bayesian 
logistic model (see “Methods”) to estimate the marginal posterior distributions of the single parameters and 
hyperparameters (see Table 1), and joint posterior distributions for each observed point.

The model selection process led to a set of covariates, whose estimated coefficients fell, in all cases, into 90% 
credible intervals (CI) that did not include 1 (odds scale). Hence, they are considered significant and strongly 
associated with the risk of snakebite in humans. The marginal posterior distributions of all coefficients, their 
mean, and 90% CI are plotted in the supplementary Fig. S2.

The covariate with the strongest effect on the snakebite risk was the PPI, which by a change of one unit (its 
whole range) increased the odds of snakebite in a household 63.88 times (90% CI 22.98–172.13). Food storage 
was the second most important variable that increased the risk of snakebite by 2.78 times (90% CI 1.50–5.43), 
straw storage by 1.78 times (90% CI 1.26–2.53), and each additional unit (km) in the distance to water by 1.38 
times (90% CI 1.02–1.85). In contrast, NDVI had the strongest ‘protective’ effect, with an odds ratio of 0.24 (90% 
CI 0.06–0.87), equivalent to a reduction of 4.36 times the odds of snakebite. Likewise, with an odds ratio of 0.46 
(90% CI 0.22–0.91) sleeping on the floor had a significant effect in the snakebite odds with a reduction equivalent 
to 2.17 times. The estimated range ρ was 31.57 km, which represents the distance at which the spatial correlation 
between any two points becomes negligible. None of the relevant pairs of covariate interactions tested were sta-
tistically significant or helped explaining the changes in the response. The final model, with a Watanabe-Akaike 
Information  Criterion29 (WAIC) of 1503.95, was also run without the spatial random component with a clear 
worsening of the model fit (WAIC: 1589.45), which verified the importance of this component.

Modelling of snakebite risk in domestic animals. The selected covariates for the final snakebite risk 
model in animals were: animal shed, straw storage, human modification of terrestrial systems (0–1 metric index 
reflecting a cumulative measure of human modification of  landscapes30), the minimum temperature of the coldest 
month (WorldClim BIO6), as well as pig density and sheep density31. The coefficients and CI for parameters and 
hyperparameters are shown in Table 1. Here also, the interactions evaluated were neither statistically significant 
nor helped explain the changes in the response variable, and therefore were not used.

The selected covariates for the final animal model were also all significant, excepting Human modification of 
terrestrial systems, which nevertheless with an odds ratio of 0.13 (90% CI 0.01–1.61) represented a reduction of 
the snakebite odds equivalent to 7.69 times. In contrast, all other covariates increased the odds of snakebite. The 
strongest effect was from BIO6, where a 10 °C temperature change represented an increase of 23.41 times the 
odds of snakebite (90% CI 1.68–348.09). Sheep density followed with an 8.06 times odd’s increase for each 1000 
sheep (90% CI 2.21–28.35), and animal shed with 6.28 times odd’s increase (90% CI 2.6–17.36). Pig density and 
straw storage had a less strong effect, yet they increased the odds of snakebite by 2.27 times (90% CI 1.07–4.52) 
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and 1.64 times (90% CI 1.04–2.65), respectively. For the animal model, the estimated range ρ was 432.4 km, 
showing a much larger spatial correlation between points. The marginal posterior distributions of the estimated 
parameters and hyperparameters, their mean, and 90% CI can be found in the supplementary Fig. S3. This model 
(WAIC: 961.54) was also tested without the spatial random component, leading to a reduction in the model fit 
(WAIC: 971.19).

Mapping of snakebite risk and population at risk. High-resolution gridded maps (1  km2) of the mean 
snakebite-risk predicted values, their uncertainty (SD) and the estimated average number of households at risk 
of snakebite per year are shown in Fig. 1. The mean risk map in Fig. 1A shows several areas with increased 
snakebite risk along the Terai, which roughly correspond to the areas with the highest uncertainty in Fig. 1B. The 
map of households at risk of snakebite (Fig. 1C) shows two main areas with high numbers of affected popula-
tion. One larger area affecting most of the districts on the eastern part of the Terai and with hotspots in three of 
them (Sarlahi, Saptari and Sunsari), and a smaller one in the western Terai affecting other three districts, with a 
hotspot in Rupandehi.

Distance to water was the covariate with the strongest, significant, risk-increasing effect (see Table 2). For 
each additional kilometre from a permanent water source, the odds of snakebite increased by 1.51 times (90% 
CI 1.12–2.04). Similar to the human risk estimation model, here also NDVI had a strong effect of 0.21 (90% CI 
0.05–0.86), equivalent to a snakebite odds-reducing effect of 5.76 times. Two more covariates were found to 
partially explain the changes in the response: precipitation of the driest quarter (BIO17) with a snakebite odds-
reducing effect of 0.12 (90% CI 0.05–1.56) and the annual mean temperature (BIO1) also with an odds-reducing 
effect of 0.28 (90% CI 0.01–2.28). Despite not being significant, they had very important effects reducing the 
odds of snakebite, and their distributions, as seen in the supplementary Fig. S4, showed that their effect was 
unambiguous.

Based on the map of households at risk and the average number of people per household in the Terai (5.27)9 
we extracted summary statistics for the districts’ adjusted population (i.e., not considering highly populated Vil-
lage Development Committees—VDCs) living in areas at three different risk thresholds (≥ 0.01, ≥ 0.05 and ≥ 0.1, 
see Table 3). Choropleth maps aggregating the estimated population exposed at snakebite risks ≥ 0.01 and ≥ 0.05 
per VDC during 12 months are shown in Fig. 2. Additionally, equivalent maps for municipality and district are 
displayed in the supplementary Figs. S5 and S6. Enlargeable, interactive versions of these maps can be found 
in the supplementary HTML files S1–S6. No comparable maps were plotted for the ≥ 0.1 risk, since only very 
few administrative units had any population over that risk threshold. We found three main predicted hotspots 
in the districts of Saptari, Makwanpur, and Sarlahi, where populations with at least 692 people are expected 

Table 1.  Estimated parameters of the fitted hierarchical Bayesian models for the human and the animal risk 
of snakebite in the Terai. Reported statistics are the posterior marginal mean, standard deviation and mode 
(logit scale), as well as the corresponding mean, 90% lower- and upper-limit credible interval (odds scale). The 
bottom rows in each model report the spatial random effects hyperparameters. Other abbreviations: Human 
modification of terrestrial systems (HMTS), minimum temperature of the coldest month (BIO6), Stochastic 
Partial Differential Equations (SPDE).

Mean SD Mode Odds (eMean)

Odds 90% CI

LL UL

Human model

(Intercept) − 2.21 0.71 − 2.20 0.11 0.03 0.35

Food storage 1.02 0.39 0.97 2.78 1.50 5.43

Straw storage 0.58 0.21 0.57 1.78 1.26 2.53

Sleeping on the floor − 0.77 0.43 − 0.71 0.46 0.22 0.91

PPI/100 4.16 0.61 4.18 63.88 22.98 172.13

NDVI − 1.43 0.79 − 1.41 0.24 0.06 0.87

Distance to Water (km) 0.32 0.18 0.32 1.38 1.02 1.85

Range for SPDE (ρ) 31.57 11.69 26.09

SD for SPDE (σ) 0.97 0.16 0.94

Animal model

(Intercept) − 5.38 0.91 − 5.36 0 0 0.02

Animal shed 1.84 0.58 1.71 6.28 2.60 17.36

Straw storage 0.50 0.28 0.48 1.64 1.04 2.65

HMTS − 2.01 1.53 − 1.97 0.13 0.01 1.61

BIO6/10 3.15 1.62 3.09 23.41 1.68 348.09

Pig density/1000 0.82 0.44 0.87 2.27 1.07 4.52

Sheep density/1000 2.09 0.78 2.11 8.06 2.21 28.35

Range for SPDE (ρ) 432.44 366.35 208.49

SD for SPDE (σ) 0.77 0.35 0.59
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Figure 1.  (a) Mean posterior distribution, (b) uncertainty (SD) of the snakebite risk for the Terai at 1  km2 
resolution, and (c) estimated number of households at risk of snakebite per 1  km2/year, based on the WorldPop 
UN-adjusted population estimates for Nepal in 2018. (Source: vector map and administrative divisions from 
https:// gadm. org/ downl oad_ count ry_ v3. html, projected in the local WGS 84/UTM zone 45 N coordinate 
reference system in QGIS 3.18.3 (https:// qgis. org/ en/ site/)).

https://gadm.org/download_country_v3.html
https://qgis.org/en/site/
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to be at an elevated snakebite risk ≥ 0.1 (see Table 3). When the risk threshold is set to a lower value (≥ 0.01), 
larger numbers of people in many more districts fall into that risk category, e.g., going up to 613,043 people in 
Rupandehi. This could represent around 6,130 possible snakebite victims in that district in 1 year. In addition 
to Rupandehi (91.41), six more districts in the ≥ 0.01 risk class have percentages of adjusted ‘rural’ population at 
risk higher than 70%, namely Saptari (86.16), Mahottari (86.11), Dhanusa (80.46), Makwanpur (73.89), Siraha 
(72.17), and Dang (70.79).

Discussion
Our results showed that covariates at different geographical scales (national and local) may have important 
effects on the risk of snakebite, both for humans and animals. The results indicate that the risk of snakebite in 
the Terai varies at national scale between clusters and at local scale between households. The evaluation of the 

Table 2.  Estimated parameters of the fitted hierarchical Bayesian model for the geospatial prediction of 
human snakebite risk in the Terai. Reporting the posterior marginal mean, standard deviation and mode 
(logit scale), as well as the corresponding mean, 90% lower- and upper-limit credible intervals (odds scale). 
The bottom rows report the spatial random effects hyperparameters. Other abbreviations: Stochastic Partial 
Differential Equations (SPDE).

Mean SD Mode Odds (eMean)

Odds 90% CI

LL UL

(Intercept) 0.54 1.68 0.58 1.71 0.10 26.32

NDVI − 1.57 0.88 − 1.55 0.21 0.05 0.86

Distance water (km) 0.42 0.18 0.42 1.51 1.12 2.04

BIO1/10 − 1.29 1.04 − 1.36 0.28 0.01 2.28

BIO17/100 − 2.12 1.78 − 2.19 0.12 0.05 1.56

Range for SPDE (ρ) 28.25 10.58 23.25

SD for SPDE (σ) 0.99 0.15 0.97

Table 3.  Estimated adjusted population for 2018 in each district of the Terai (WorldPop), and population 
living in areas with snakebite risks larger or equal to 0.01, 0.05, or 0.1. All, the adjusted district population and 
the risk classes exclude the highly populated urban VDCs, removed by design, where no estimation was done.

Region District Adjusted pop. (2018)
Population at ≥ 0.01 
risk, (%)

Population at ≥ 0.05 
risk, (%)

Population at ≥ 0.1 
risk, (%)

East Jhapa 369,014 225,609 (61.14) 0 0

East Morang 499,966 227,215 (45.45) 24 (0.00) 0

East Saptari 509,774 439,229 (86.16) 87,351 (17.14) 1257 (0.25)

East Siraha 789,571 569,841 (72.17) 0 0

East Sunsari 1,327,568 511,269 (38.51) 0 0

East Udayapur 249,598 151,315 (60.62) 569 (0.23) 0

Central Bara 541,445 9504 (1.76) 0 0

Central Chitawan 329,361 7008 (2.13) 0 0

Central Dhanusa 634,001 510,105 (80.46) 0 0

Central Mahottari 512,858 441,618 (86.11) 109 (0.02) 0

Central Makwanpur 256,102 189,236 (73.89) 8002 (3.12) 1025 (0.40)

Central Parsa 1,161,894 140 (0.01) 0 0

Central Rautahat 575,095 2136 (0.37) 0 0

Central Sarlahi 646,882 426,967 (66.00) 24,137 (3.73) 692 (0.11)

West Kapilbastu 581,841 256,280 (44.05) 1948 (0.33) 0

West Nawalparasi 442,365 223,614 (50.55) 463 (0.10) 0

West Rupandehi 670,644 613,043 (91.41) 9717 (1.45) 0

Mid-Western Banke 330,191 125,581 (38.03) 811 (0.25) 0

Mid-Western Bardiya 277,439 31,578 (11.38) 124 (0.04) 0

Mid-Western Dang 396,505 280,690 (70.79) 1490 (0.38) 36 (0.01)

Mid-Western Surkhet 157,496 52,701 (33.46) 0 0

Far-Western Kailali 669,770 7931 (1.18) 0 0

Far-Western Kanchanpur 728,439 22,669 (3.11) 0 0
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final models without spatial random components and the worsening of the models’ goodness of fit as a result 
highlighted how snakebite risk and its determining factors are indeed spatially structured.

A strong association between high snakebite incidence and mortality, and poverty was established from the 
analysis of 138 countries affected by the  disease32. In this study, we identified the PPI, an indicator for poverty, 
as a highly influential risk-increasing factor for humans. This not only confirms the critical role of poverty as a 
driver for this Neglected Tropical Disease, but also offers the possibility to use a standardized index at individual 
household scale for similar studies. Chaves et al.33 used the Poverty Gap, which is a simpler index expressing how 
far a person is from the average national poverty line, but to our knowledge, no study has used PPI for snake-
bite in any way. Applying PPI as a snakebite risk predictor also addresses previous expert calls for an Ecohealth 
approach to consider the relationship between the structural characteristics of houses, poverty, and  snakebite34.

Three of the survey covariates had significant effects on the odds of snakebite. Food storage and straw stor-
age increased them, while sleeping on the floor reduce them. The effect of the first two covariates is likely to be 

Figure 2.  Choropleth maps aggregating the estimated population (WorldPop UN-adjusted for 2018) exposed at 
snakebite risks ≥ 0.05 (a) and (b) ≥ 0.01 per Village Development Committee during 12 months. (Source: vector 
map and administrative divisions from https:// gadm. org/ downl oad_ count ry_ v3. html, projected in the local 
WGS 84/UTM zone 45 N coordinate reference system in QGIS 3.18.3 (https:// qgis. org/ en/ site/)).

https://gadm.org/download_country_v3.html
https://qgis.org/en/site/
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related to prey availability, represented by rodents, which are attracted by food and shelter sources. Both food 
and straw are very often stored near dwellings, which in the end multiply the number of possible encounters 
between humans, domestic animals, and the hunting  snakes20. The expected snakebite risk reduction effect by 
sleeping on the floor is more complex though. Previously, a higher snakebite incidence was reported among rural 
Hindus in Maharashtra, India, due to their custom of sleeping on the  floor35,36, while in Nepal, Chappuis et al. 
did not find any protective effect or significant difference in snakebite cases between sleeping on a cot or on the 
 floor37. This result, nevertheless, might be influenced again by regional customs that make sleeping on the floor 
more common in eastern Terai (71.1% of all affirmative answers to this question), and second, by the commonly 
acknowledged prevalence of kraits (Bungarus spp.) in western Terai, which are the species most commonly 
linked to bites to people sleeping on the floor while hunting at night inside  houses22,38. This geographic separa-
tion, between the human behaviour and the distribution of the species considered to cause most bites linked to 
it, could explain the observed shift in the odds towards a reduction effect. This effect should be further explored 
in localized studies designed to capture behavioural differences in humans and snakes.

For both the general human risk model and its equivalent prediction model, the covariate Distance to water 
had a significant risk-increasing effect. For each additional km in distance from permanent water sources, the 
odds of snakebite increased by 1.38 and 1.51 times, respectively. From a human perspective and in this socio-
economic framework, it would be important to consider not only the distance to water, but also the path taken 
to get the water (or any other resource). If this path would lead a person through grasslands and open fields, 
this could imply an increased risk of snakebite. From an ecological perspective, there are two important aspects 
to consider in relation to water sources. One is, as in this study, the distance from large, constant water sources, 
which usually represent stable environments subject to less hydric stress. The second (not considered here) are 
the human-made water sources, such as ponds, reservoirs, and paddy fields that change often, are usually closer 
to human dwellings, and are known to attract some medically important venomous snakes (MIVS)5. Studies on 
snake migration and home range use have concluded that depending on species and ecological conditions, snakes 
can move between a few tens of meters per day and more than 10 km between seasons, while searching for water 
and prey  resources38–41. In sub-tropical regions like the Terai, snakes living closer to continuous sources of water 
and vegetation should have easier access to a wider variety of prey. On the contrary, those living in agricultural 
areas might need to scout farther in the search for resources, encountering human-made waterbodies and prey, 
such as  rodents42 and amphibians, abundant in this  region10. Further studies considering all sources of water, 
and species ecology, biology and richness would be necessary to completely understand the effect of this and 
similar eco-physiological covariates.

Another important factor was the NDVI, which is a commonly used value to express photosynthetic activ-
ity, leaf production and in summary the ‘greenness’ of the  environment43. As is the case for other covariates, its 
interpretation depends on the study circumstances. In Iran, it was considered an indicator of prey availability for 
snakes and linked to snake habitat  suitability14. Elevated NDVI values have been associated with higher number 
of hospitalizations in Nigeria and northern Ghana, in particular during the periods of high agricultural activity, 
which is also related to higher snake-human contact and higher snakebite  incidence43. In our study, its ‘protective’ 
effect can indeed be the consequence of better access to prey associated with healthier ecosystems, explained 
in the Terai by the higher NDVI values of the multiple dense forests distributed along the region. In addition, 
the averaged NDVI values for agricultural areas should be lower than those for perennial forests, because they 
include the highs and lows of production and harvest.

Environmental drivers like temperature and precipitation are common factors in geospatial analyses of 
 snakebite13,14,17,44. They are found in many cases to be the main factors modulating the incidence or risk of snake-
bite, while varying in importance according to study conditions. For example, in Iran, precipitation seasonality 
was the most prevalent climatic covariate determining the habitat suitability leading to snakebite  risk14, while in 
Mozambique, temperature seasonality was the predominant  covariate13. Despite the Terai’s sub-tropical climate, 
the range of the average minimum temperature of the coldest month (BIO6) was 1.8–10.9 °C. For our snakebite 
risk analysis in animals, an increase of 10 °C of BIO6 between any two points represented an increase in the 
odds of snakebite of 23.41 times. For snakes, this range could be the difference between total lethargy and partial 
 activity45, which could lead to increased numbers of snakebites. In addition, and according to the production 
and holding practices of domestic animals in the Terai, this temperature range can also represent the difference 
between animals (mainly ruminants) being kept in sheds when at the lower range limits, or being let out of them 
at the upper limits, which would again increase the chances of encounters with snakes.

Similarly, for the animal model, pig density and sheep density, significantly influenced the variation in the 
risk of snakebite for animals in the Terai. This could be due to the conditions in which the animals and their 
feed are kept, favouring environments that are beneficial for either snakes or their prey. At more local scales, 
rather than the distribution, the presence of other animal species could instead be the factor associated with 
higher snakebite  rates12. However, since the available data on domestic animal density was produced more than 
10 years ago, and the animal population has grown substantially in the last years in Nepal, this outcome should 
be interpreted with caution.

For the animal risk, the possession of an animal shed also significantly increased the odds of snakebite. Similar 
to straw storage, animal sheds and similar constructions offer some shelter and at the same time attract small 
(prey) animals, both of which are likely to attract snakes, increasing snakebite risk for the animals using the 
shed. If in addition, the sheds function as poultry coops, the snake hunting behaviour might be instead targeted 
towards chicks and  chickens12. Mitigation measures such as raising the coop’s floor or securing openings with 
fine metal mesh have been suggested to reduce this  risk12.

The human modification of terrestrial systems was the only non-significant covariate in the animal risk model. 
However, as its strong, risk-reducing effect still seems to explain a lot of the response variation, it was retained. 
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Its change in one unit, i.e., going from a pristine to fully modified environment, decreased the odds of snakebite 
by 0.13 (equivalent to 7.69 times), which agrees with previous national survey results from Sri  Lanka21.

For our human risk prediction model, four covariates were either significant or helped to explain the changes 
in the response. Distance to water and NDVI were clearly significant, and precipitation of the driest quarter 
(BIO17) and the mean annual temperature (BIO1) helped to explain some of the response variation with con-
vincing, unambiguous effects. For BIO17, an increase of 100 mm of rain during the driest months of the year 
represented an odds-reduction effect equivalent to 8.33 times. This agrees with the results of distance to water, 
suggesting that the additional availability of resources during water shortage periods, i.e., almost four times more 
rain (BIO17 range: 18–71 mm), could locally improve ecological conditions for snakes also leading to less scout-
ing and fewer human encounters. Previous studies have analysed the multilevel ecological effects of droughts, e.g., 
reducing snake prey and leading snakes to engage in riskier  behaviours46,47. For BIO1, the protective effect was 
weaker. An increase of 10 °C represented a reduction of the odds of snakebite equivalent to 3.57 times. Average 
temperatures for specific locations are difficult to interpret, since they might depend on mild highs and lows, 
strong highs and lows, or relative combinations of both. Thus, despite having a relatively important effect on the 
response, this effect still might be the consequence of confounding and unknown interactions.

Several other evaluated covariates, for both humans and animals, showed a negligible effect on describing the 
response, were not significant while having very large uncertainties, or both. Consequently, they were discarded 
as predicting factors. For the list of baseline covariates evaluated, see supplementary Table S1. For a complete 
list of available survey covariates, see Alcoba et al.27.

Some of our discarded covariates have been important in other studies, for example, to quantify snakebite 
risk based on reclassification methods of covariates such as habitat suitability, species presence, or envenoming 
severity13,14,17,44,48. These methods are especially relevant when one species (or very few) is the cause of most 
snakebite cases, and has differentiated optimal and sub-optimal habitats. In Nepal, and particularly in the Terai, 
there are at least two, and sometimes more than 10 MIVS with overlapping  distributions49. Thus, it could be 
said that practically the whole region offers suitable habitat for multiple MIVS. In addition, the impossibility 
of reliably identifying the species having bitten the surveyed victims hindered the use of single species in the 
analysis. In our analysis, species richness was removed, as it showed almost no effect on the response. A recent 
meta-analysis reported an equivalent result at global scale, finding no significant difference between the number 
of venomous snake species in tropical and temperate locations, while the number of snakebites is clearly higher 
in tropical  areas50. These results suggested that high incidence of snakebite is unrelated to species richness, but 
instead related to other factors like the number of people working in agricultural  environments21,32,50. Another 
important driver of snakebite incidence has been population density50. In our study, however, any possible effect 
from population density on the risk was diminished by the random selection of households at specific numbers 
during study design. This was later confirmed by the minimal effect of population density as covariate in the 
human risk analysis.

This study presents a few limitations. For instance, despite the capacity of the INLA method to borrow 
strength from neighbouring observations and areas, the selection of adequate covariates with enough explana-
tory power still depends greatly on the number of snakebite cases, which even for a national scale study like 
this remains small. Also, some of the covariates with the strongest explanatory power came from our household 
survey, which prevented their use for generalized spatial prediction models. Concerning the animal risk analysis, 
due to the small number of snakebite cases we opted to aggregate all animal species and consider a grouped 
response. Thus, for a spatial analysis of animal risk, it was not worth it to consider each species, since that would 
dilute further an already sparse dataset in individual models and selection processes. Moreover, the data gathered 
for animals was dependent on the random selection of (human) households and unrelated to the current distri-
bution of animal populations. This, in addition to the possible number of dry bites that go unnoticed, might be 
responsible for the low number of animal victims recorded (even combined across all species), making a more 
detailed analysis unfeasible.

Despite the large number of covariates examined during our analysis, very few were useful to predict snakebite 
risk along the Terai. It is possible that confounders or other difficult-to-measure covariates could better explain 
the complex relationship between the ecology and biology of MIVS, socio-economic factors, human behavioural 
traits, and the circumstances around domestic animal keeping. This needs to be further explored, following a 
recent call for an overarching One Health and Ecohealth approach to better understand the drivers for snakebite 
risk, incidence, and mortality under specific  situations34.

In conclusion, snakebite is a multi-factorial disease and there is no possible universal approach to model its 
risk. Each model should be individually designed for each set of socio-economical, geographic, ecological, cul-
tural, and environmental  circumstances19. To better understand and address the snakebite problem, it is necessary 
to approach it, whenever possible, with local data collected at a national scale, so that the conclusions drawn can 
fuel appropriate national public health policies and actions. As long as people work, live, and keep their domestic 
animals in close contact with natural environments with MIVS, the risk of snakebite will be present. However, 
better understanding of the factors influencing that risk at the most granular scale possible, and the estimation of 
the populations at risk, can help to better target prevention and mitigation measures. For humans, this evidence 
can channel efforts towards improved access to treatment through the optimized stockpiling of antivenom, and 
the improvement, relocation or new construction of treating facilities, but more importantly, towards community 
education and sensitization in preventive  campaigns51. Part of that preventive and educative efforts can be done 
at household level, by promoting and facilitating the use of protective equipment such as rubber boots, or the 
guidance on how to improve and adapt their immediate surroundings to make them ecologically less attractive for 
snakes and their prey. For domestic animals, this information could help better target awareness-raising activities 
for animal owners and implement mitigation strategies. For animals at higher risk, tailored interventions such 
as the improvement of housing conditions, regular cleaning of sheds and surrounding areas (e.g., from food 
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waste and surrounding vegetation), and using light when animals are walked out of the enclosure at night could 
be deployed specifically as snakebite prevention  measures52. It is also important to highlight that many of the 
factors analysed in this study affect most directly the snakes themselves, not only as snakebite agents, but also as 
a diverse group of species, differently affected by ecological, climatic and environmental factors in a multiplicity 
of settings shared with humans and domestic animals. It is therefore necessary to further investigate how those 
factors influence the behavioural and ecological traits of MIVS in order to truly understand this disease from a 
One Health viewpoint. At stake is the reduction of snakebite envenoming incidence rates in humans and animals, 
and of its possible long-term sequelae on human populations.

Methods
Area and primary data description. The geographic focus of this study was the Terai region of Nepal, 
populated by about 16,087,000 people (about 57.3% of Nepal’s population) for 2018 according to the UN-
adjusted estimates from  WorldPop53. In Nepal, just under 80% of the population lives in rural  areas54 and the 
Terai concentrates most of these rural  population9. Since snakebite affects primarily rural  populations32,55,56, we 
started by filtering out urban and densely populated clusters areas where snakebite is considered to be  unusual21. 
The primary cluster areas used for the study were the Village Development Committees (VDC), which repre-
sented the smallest, viable administrative unit recognized at the time in Nepal. Our primary data source was a 
multi-cluster random survey, including more than 13,800 households in all the Terai. The survey was carried out 
between December 2018 and May 2019, and gathered retrospectively a wide range of information in addition to 
the snakebite cases in humans and animals during the previous 12 months. All answers were associated to the 
households’ geolocation. The detailed survey methodology can be found in Alcoba et al.27. Two binary response 
variables, one for humans, and one for domestic animals, identified snakebite cases in the last 12 months (from 
the survey date) and defined the two main models (human and animal). Snakebite risk is defined as the theoreti-
cal probability of encountering and being bitten by a  snake51. We considered this probability within a period of 
12 months, either for a household member in the estimation model, or for anyone in a specific area of 1  km2 
in the geospatial prediction model. In addition, snakebite risk can be measured as the likelihood of exposure 
to a snake (presence and abundance) times the likelihood of an encounter leading to a  bite51. Considering the 
impossibility of measuring snake abundance at national scale, in this study we regressed snakebite incidence on 
multiple environmental and socio-economic factors to find that theoretical probability. All data management 
and curation, as well as the statistical analysis were done in R version 4.0.457. Some input and output geospatial 
layers were processed in QGIS version 3.16.458.

Model architecture. The Integrated Nested Laplace Approximations (INLA) method is a computationally 
efficient approach for Bayesian statistical inference of latent Gaussian Markov Random Field (GMRF)  models59. 
These are highly adaptable type of models including linear, generalized, mixed, spatial, and spatio-temporal 
 models19,60. This type of Bayesian Hierarchical models is especially robust for the analysis of highly sparse data, 
such as the one presented by neglected tropical diseases like snakebite, and its integration with the Stochastic 
Partial Differential Equations (SPDE)61 allows to model multiple types of georeferenced  data19, while borrowing 
strength across space and  time62.

The models for the risk of snakebite (SB) at location i satisfy the following general structure:

where, β0 is the intercept, X(si)β j are the covariates’ matrix and coefficients, i represents the surveyed households 
and their respective locations, j is the number of covariates, π(si) is the expected value for the risk of snakebite 
at location i , and u(si) is the spatially correlated random effect. This u component follows a GMRF distribution 
with mean zero ( 0 ) and covariance matrix Σ, which models the data’s spatial  dependency18. To determine u , it 
is necessary to estimate Σ, whose elements are defined by a Matérn covariance function (here simplified for two 
dimensions):

where, si and si′ are spatial locations of the observations i and i′ , ‖.‖ represents the Euclidean distance between 
two points, κ is a scale hyperparameter and  K1 is the modified Bessel function of the second kind with order 1. 
For a complementary description of the INLA statistical approach, see the supplementary Document S1, and 
for a detailed description see Rue et al.59. The INLA method is implemented in the R package INLA (version 
21.02.23)63.

Selection of geospatial covariates. Two data sources were available for our analysis. The first was our 
national multi-cluster random survey, which provided highly granular observations for demographic, clinical, 
socio-economic and environmental covariates (Table 4). The second was a set of publicly available national grid-
ded data sets (Table 4). Depending on the type of model (human or animal), we considered suitable covariates 
from the survey, and open-source geospatial gridded layers that could be relevant for the model response. These 
gridded layers were selected based on their possible relevance to snake ecology or behaviour as reported by pre-

SB(si) ∼ Bernoulli(π(si))

(1)logit(π(si)) = η(si) = β0 + X(si)β j + u(si)

u(si) ∼ GMRF(0,�)

(2)Cov
(

U(si),U
(

si′
))

= σ 2 ×
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vious studies with similar research focuses, analytical methodology, or environmental and ecological study con-
ditions. Priority was given to studies addressing snakebite risk and the distribution of venomous snake species, 
often taken as a risk  proxy13–15,17,43,44. Most of these studies based their estimations mainly on climatic covariates 
from the WorldClim  database64, and on environmental covariates such as NDVI and human  footprint14. How-
ever, since snakebite has been largely associated with  poverty32, other covariates used to address poverty related 
topics, for instance illiteracy, malnutrition and  filariasis18,19,65, were also considered.

The model selection process started with a set of 66 preliminary covariates (including available geospatial 
layers and relevant survey covariates), and finished with six for both the human and animal models. Highly 
correlated covariates were removed, first by computing the Pearson’s correlation coefficients between pairs of 
covariates (considering values between − 0.6 and 0.6), and second by running a sequential Variance Inflation 
Factor (VIF) analysis with a maximum threshold of five, also aimed at reducing multicollinearity between covari-
ates. For each model, the selection process started with 15 to 18 covariates, which served as a baseline reference. 
During model selection, and after each iteration, we identified and removed parameters with posterior distribu-
tion means with negligible overall effects on the linear predictor. For that, we set a threshold between − 0.1 and 
0.1 (log Odds scale), which represents an effect change of just above 10%. Additionally, we used the Watanabe-
Akaike Information Criterion (WAIC)  value29 to evaluate the goodness of fit and model iteration comparison. 
These two procedures helped to filter out non-significant covariates either with very small or mild effects and 
very large standard deviations. Similarly, we assessed the effect of interactions between several meaningful pairs 
of covariates in each model. Finally, we evaluated the importance of the spatial random effect, by also running 
each main model without that component.

Input preparation. To avoid numerical inconsistencies due to large-scale differences between covariates, 
we scaled-down by factors of 10 some of the continuous covariates (see Table 4). Scaled inputs tend to work 
better with the default priors and to improve the performance of the  models66. Ten of the socio-economic sur-
vey covariates were transformed into the Poverty Probability Index (PPI, https:// www. pover tyind ex. org/), as 
intended by design. The specific questions generating this data for Nepal can be found in the supplementary 
Document S1. This standardized index denotes the likelihood of a household being below a certain poverty 
line. In this case, we used the PPI ‘100% national’ lookup table for Nepal as reference to define the poverty 
 likelihood28. Finally, the covariate ‘Distance to water’ was created by calculating Euclidean distances from each 
household to the nearest permanent waterbody available in OpenStreetMaps  layers67.

Validation. Due to the data sparseness, validation schemes such as splitting the data in training and test-
ing subsets could not be carried out. For the risk analysis in humans, only 1.18% of the binary responses were 
positive, as were 0.7% in animals. Such small rates would complicate the possibility of obtaining a representa-
tive random sample, remove any power from the tests and difficult their convergence. Instead, we performed a 
sensitivity analysis by constantly challenging the stability of the parameters and hyperparameters under different 
circumstances, until no further improvement was possible. For this, we rerun tens of times each model, evaluat-
ing the effect of the addition and removal of, and interactions between, covariates via the WAIC value and the 
behaviour of the regression coefficients. The model runs also included the modification of the hyperparameters 
priors within sensible ranges for logistic regression in the SD prior (i.e., 0.1–1.5) and results from early model 
runs for the range prior.

Geospatial risk prediction and differential modelling. Since the household survey covariates cannot 
be imputed to other locations in the Terai, for prediction purposes we implemented a variation of the human 
risk model. It included exclusively geospatial data available for the whole Terai region in the form of gridded 
data. The input data included both the survey observation points that serve again to estimate the intercept and 
regression parameters for the used covariates, and a regular grid of 39,684 points spaced every 1 km, covering all 

Table 4.  Geospatial covariates used for the current estimation of snakebite risk in humans or animals (gridded 
and survey based).

Category Covariate Description Scaling Data source

Environmental

NDVI annual average for 2018 Continuous No NEOte am

Distance to water (Euclidean distances) Continuous  × 0.001 Based on GeoFa brik and  OSM67

Human modification of terrestrial systems 
(HMTS) 2016 Continuous No NASA  SEDAC30

Climatic BIO6 (min. temperature of coldest month) 
1970–2000 Continuous  × 0.1 WorldClim64

Epidemiological

Food storage Discrete, 2 levels No Survey

Straw storage Discrete, 2 levels No Survey

Sleep on floor Discrete, 2 levels No Survey

Socio-economical PPI Continuous  × 0.01 Survey

Livestock density
Pig density, 2010 Continuous  × 0.001 Harva rddat averse31

Sheep density, 2010 Continuous  × 0.001 Harva rddat averse31

https://www.povertyindex.org/
https://neo.sci.gsfc.nasa.gov/
http://download.geofabrik.de/osm-data-in-gis-formats-free.pdf
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SUFASB
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SUFASB
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the Terai, where the response variable was predicted. Using the INLA methodology, a posterior distribution was 
approximated for each of these points, and from it the mean and standard deviation (SD) were estimated. Finally, 
using the mean risk and the household population density, we mapped the estimated number of households at 
risk of suffering a snakebite per  km2 in 1 year. For the animal model, it was not possible to plot a snakebite risk 
map, since data scarcity did not allow for the spatial analysis of individual species, and a unified risk map for 
more than 10 species would not convey any useful information.

Ethics statement. Ethics approval was provided by the Nepal Health Research Council (NHRC Reg. No. 
585/2018), and the Commission Cantonale d’Ethique de la Recherche Scientifique in Geneva, Switzerland (CCER 
and SwissEthics Registry No. 2018-01331, Snake-Byte project). All methods were performed in accordance with 
the ethical guidelines from the Swiss and Nepali ethics committees for observational studies involving humans. 
The research project was conducted in agreement with the Declaration of Helsinki, the principles of Good Clini-
cal Practice, the Human Research Act (HRA) and the Human Research Ordinance (HRO) as well as other locally 
relevant regulations. There was no experimental research carried out in animals, domestic or otherwise.

Informed consent of human participants. The data involving human participants in this observational 
study was obtained through questionnaires for which written informed consent was asked to the person sur-
veyed (or his/her legal guardian(s) in the case of minors, i.e., less than 18 years in Nepal).

Data availability
The data used and the sources are described in this article and in the supplementary materials. For the primary 
data collected in the Snake-Byte survey, participant data that underlie the results reported in this article will be 
made available upon reasonable request through the University of Geneva data repository, after de-identification, 
beginning 12 months following the publication of this article. Requests should be directed to nicolas.ray@unige.
ch.

Code availability
The base code for reproducing the INLA analysis is available in the supplementary R-script S1.
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