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Abstract 

Background:  Malaria vector control in the Democratic Republic of the Congo is plagued by several major chal-
lenges, including inadequate infrastructure, lack of access to health care systems and preventative measures, and 
more recently the widespread emergence of insecticide resistance among Anopheles mosquitoes. Across 26 prov-
inces, insecticide resistance has been reported from multiple sentinel sites. However, to date, investigation of molecu-
lar resistance mechanisms among Anopheles vector populations in DRC has been more limited.

Methods:  Adult Anopheles gambiae sensu lato (s.l.) and Anopheles funestus s.l. were collected from two sites in Sud-
Kivu province and one site in Haut-Uélé province and PCR-screened for the presence of 11 resistance mutations, to 
provide additional information on frequency of resistance mechanisms in the eastern DRC, and to critically evaluate 
the utility of these markers for prospective country-wide resistance monitoring.

Results:  L1014F-kdr and L1014S-kdr were present in 75.9% and 56.7% of An. gambiae s.l. screened, respectively, with 
some individuals harbouring both resistant alleles. Across the three study sites, L43F-CYP4J5 allele frequency ranged 
from 0.42 to 0.52, with evidence for ongoing selection. G119S-ace1 was also identified in all sites but at lower levels. 
A triple mutant haplotype (comprising the point mutation CYP6P4-I236M, the insertion of a partial Zanzibar-like 
transposable element and duplication of CYP6AA1) was present at high frequencies. In An. funestus s.l. cis-regulatory 
polymorphisms in CYP6P9a and CYP6P9b were detected, with allele frequencies ranging from 0.82 to 0.98 and 0.65 to 
0.83, respectively.

Conclusions:  This study screened the most up-to-date panel of DNA-based resistance markers in An. gambiae s.l. and 
An. funestus s.l. from the eastern DRC, where resistance data is lacking. Several new candidate markers (CYP4J5, G119S-
ace1, the triple mutant, CYP6P9a and CYP6P9b) were identified, which are diagnostic of resistance to major insecticide 
classes, and warrant future, larger-scale monitoring in the DRC to inform vector control decisions by the National 
Malaria Control Programme.
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Background
Malaria is a significant public health concern in the 
Democratic Republic of the Congo (DRC), where it is 
currently responsible for 12% and 11% of global malaria 
cases and deaths, respectively [1]. In the DRC, approxi-
mately 60% of the population reside in zones with an 
average Plasmodium falciparum prevalence above 50% 
[2]; malaria is the leading cause of medical consulta-
tions, hospitalizations and death [3], accounting for 
44% of all outpatient visits and 22% of deaths in chil-
dren under 5 years old [4]. Malaria vector control in the 
DRC relies on universal coverage of insecticide-treated 
nets (ITNs), via mass campaigns, community-based 
top-ups to maintain high coverage, and continuous dis-
tributions through routine antenatal care (ANC) and 
child immunization services by the national expanded 
programme on immunization (EPI) [5]. Small-scale 
indoor residual spraying (IRS) is also undertaken by 
private enterprises (usually mining operations) in focal 
areas [5]. Between 2011 and 2018, an estimated 134.8 
million pyrethroid-treated ITNs were distributed 
nationwide through such mechanisms [6]. However, 
recent estimates of net access and use across the coun-
try remain low, with the proportion of households with 
at least one ITN for every two people declining from 
47% to 2013/14 to 44% in 2017/18, and the proportion 
of children under five years old reported sleeping under 
an ITN the previous night also decreasing from 56% to 
2013/14 to 51% in 2017/18 [7].

Malaria control in the DRC is plagued by several 
major challenges, including poor transportation and 
communication infrastructure, a majority rural popu-
lation, high poverty, political and socio-economic 
instability, lack of access to health care systems and 
preventative measures for at-risk populations, and 
more recently the widespread emergence of insecti-
cide resistance among Anopheles vector populations. 
Across 26 provinces in the DRC, insecticide resistance 
in An. gambiae sensu lato (s.l.) and An. funestus s.l. has 
been reported from multiple sentinel sites [8], includ-
ing reduced susceptibility to DDT, deltamethrin and 
permethrin in Kwilu [9], Nord-Ubangi [10] and Sud-
Kivu provinces [11], and to deltamethrin and DDT in 
Haut-Uélé province [12]. In Kinshasa, high intensity 
pyrethroid and organochlorine resistance has been 
observed, with An. gambiae populations displaying low 
mortality after 6 h of exposure to DDT and permethrin 
[13], and significant proportions of vectors are capable 

of surviving exposure to five and ten times the diag-
nostic doses of alpha-cypermethrin, deltamethrin and 
permethrin [14]. Importantly, nationwide Demographic 
and Health surveys (DHS) in the DRC indicate higher 
levels of protection with ITNs containing deltamethrin, 
compared to permethrin, suggesting a partial influence 
of insecticide resistance on vector control intervention 
efficacy [15]. By comparison to pyrethroids, resistance 
profiles to other insecticide classes (e.g. organophos-
phates and carbamates) have been less clearly estab-
lished, restricting the ability of the national malaria 
control programme (NMCP) to make evidence-based 
decisions for resistance management.

To date, the investigation of insecticide resistance 
mechanisms among Anopheles vector populations in 
DRC has been limited (summarized in Additional file 1: 
Table S1). L1014F- and L1014S-kdr mutations are found 
at variable frequencies in An. gambiae across the coun-
try, with the former predominating in western and cen-
tral provinces (Additional file 1: Table S1); a proportion 
of individuals have also been documented harbouring 
both L1014F and L1014S alleles. N1575Y is present at 
very low prevalence in Nord-Ubangi province [10], while 
other commonly described mutations, such as G119S-
ace1, have not been detected in the DRC (Additional 
file  1: Table  S1). Among local An. funestus, overexpres-
sion of key detoxification enzymes (including CYP6P9a, 
CYP6P9b, CYP6M7, CYP6P4a, CYP6P4b and GSTE2) 
has been identified in pyrethroid resistant field popula-
tions [12, 13] (Additional file 1: Table S1). Furthermore, 
increased mortality following pre-exposure of resistant 
An. gambiae to the synergist piperonyl butoxide (PBO) 
before pyrethroid bioassays, also indicates a role for met-
abolic resistance mechanisms in this species complex in 
the DRC [8, 10], supported by reports of overexpression 
of CYP6M2 and CYP6P1 [12].

While recent next-generation sequencing initiatives 
have characterised substantial genetic diversity within 
natural Anopheles populations, concerns have been 
raised for the rapid evolution and spread of novel insecti-
cide resistance mechanisms [16, 17]. However, real-time 
tracking of resistance mechanisms in the field, especially 
the identification of diagnostic markers that are predic-
tive of vector control intervention failure [18, 19], is still 
lacking. As an intermediate step for future insecticide 
resistance monitoring efforts in the DRC, this study 
assessed P. falciparum infection prevalence and the fre-
quency of 11 published insecticide resistance mutations 
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among populations of An. gambiae s.l. and An. funestus 
s.l., collected from three areas of pyrethroid resistance in 
the eastern DRC.

Methods
Mosquito collections and species identification
Adult Anopheles were collected from households in 
two sites in Sud-Kivu province (Tchonka; 2° 19′ 18″ S, 
27° 32′ 24″ E and Tushunguti; 1° 48′ 19″ S, 28° 45′ 00.5″ E) 
and one site in Haut-Uélé province (Kibali; 3° 6′ 59″ N, 
29° 35′  8″ E) using Centers for Disease Control (CDC) 
light traps during the rainy season in Tchonka (100 
houses: April-June 2018), Tushunguti (50 houses: 
December 2017-February 2018) and Kibali (25 houses: 
June 2019) (Fig. 1). Mosquitoes were identified morpho-
logically as members of the An. gambiae s.l. or An. funes-
tus s.l. complexes [20].

Individual mosquitoes were homogenized in a Qiagen 
TissueLyser II with sterilized 5 mm stainless steel beads 
for 5  min at 30  Hz and incubated overnight at 56 °C. 
DNA was extracted using a Qiagen DNeasy 96 blood and 
tissue kit (Qiagen, UK), according to the manufacturer’s 

protocol. A subset of mosquitoes, morphologically clas-
sified as An. gambiae s.l. (n = 24) or An. funestus s.l. 
(n = 16), were further identified to species-level by PCR 
[21, 22]. A total of 163 An. funestus s.l. from Tchonka 
(n = 133) and Tushunguti (n = 30) and 192 An. gambiae 
s.l. from Tchonka (n = 131), Tushunguti (n = 32) and 
Kibali (n = 29) were used for insecticide resistance muta-
tion analyses.

Plasmodium falciparum screening
Individual mosquitoes (n = 355) were screened for the 
presence of P. falciparum using a SYBR green real-time 
assay targeting the parasite cytochrome c oxidase subunit 
1 (cox1) mitochondrial gene (present in all stages of the P. 
falciparum life cycle) [23].

Anopheles gambiae s.l. target site mutation screening
Mosquito individuals morphologically identified as An. 
gambiae s.l. (n = 192) were screened for eight mutations: 
L1014S-kdr, L1014F-kdr, G119S-ace1, N1575Y, L43F-
CYP4J5, CYP6P4 (I236M), Zanzibar-like transposable 
element (TE) and CYP6AA1 duplication.

Fig. 1  Map of study sites in Sud-Kivu (Tchonka, and Tushunguti) and Haut-Uélé (Kibali) provinces, in the Democratic Republic of the Congo
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Table 1  PCR primers, probes and reaction conditions

Primers and probes 
(concentrations)

5′ modifications Sequences Reaction conditions References

An. gambiae s.l. mutation

 L1014F-kdr IPCF (2.5 pmol/µL)
AltRev (2.5 pmol/µL)
WT (25 pmol/µL)
West (8 pmol/µL)

GAT​AAT​GTG​GAT​AGA​TTC​CCC​GAC​
CATG​
TGC​CGT​TGG​TGC​AGA​CAA​GGATG​
GGT​CCA​TGT​TAA​TTT​GCA​TTA​CTT​ACG​
AAT​A
CTT​GGC​CAC​TGT​AGT​GAT​AGG​AAA​
TGTT​

1 cycle: 5 min at 95 °C
35 cycles: 30 s at 95 °C, 
30 s at 59 °C, 30 s at 72 °C
1 cycle: 5 min at 72 °C

[25]

 L1014S-kdr IPCF (2.5 pmol/µL)
AltRev (2.5 pmol/µL)
WT (5 pmol/µL)
East (2.5 pmol/µL)

GAT​AAT​GTG​GAT​AGA​TTC​CCC​GAC​
CATG​
TGC​CGT​TGG​TGC​AGA​CAA​GGATG​
GGT​CCA​TGT​TAA​TTT​GCA​TTA​CTT​ACG​
AAT​A
CTT​GGC​CAC​TGT​AGT​GAT​AGG​AAA​ATC​

1 cycle: 5 min at 95 °C
35 cycles: 30 s at 95 °C, 
30 s at 57 °C, 30 s at 72 °C
1 cycle: 5 min at 72 °C

[25]

 N1575Y Forward (1 µM)
Reverse (1 µM)
N (0.5 µM)
Y (0.5 µM)

HEX
FAM

TGG​ATC​GCT​AGA​AAT​GTT​CAT​GAC​A
CGA​GGA​ATT​GCC​TTT​AGA​GGT​TTC​T
ATT​TTT​TTC​ATT​GCA​TTA​TAG​TAC​
TTT​TTC​ATT​GCA​TAA​TAG​TAC​

1 cycle: 15 min at 95 °C
40 cycles: 15 s at 94 °C, 
1 min at 60 °C

[24]

 G119S-ace1 Forward (0.8 µM)
Reverse (0.8 µM)
G (0.2 µM)
S (0.2 µM)

HEX
FAM

GGC​CGT​CAT​GCT​GTG​GAT​
GCG​GTG​CCG​GAG​TAGA​
TTC​GGC​GGC​GGC​T
TTC​GGC​GGC​AGC​T

1 cycle: 10 min at 95 °C
40 cycles: 10 s at 95 °C, 
35 s at 60 °C

[25]

 L43F-CYP4J5 Forward (1 µM)
Reverse (1 µM)
Probe 1 (0.5 µM)
Probe 2 (0.5 µM)

FAM
HEX

AGC​CTG​CGC​GTG​TGATA​
CTT​CTT​CTC​CTG​TGG​TTC​GTTTG​
TTG​CCG​GAA​GGC​AGT​
TTG​CCG​GAG​GGC​AGT​

1 cycle: 10 min at 95 °C
40 cycles: 15 s at 92 °C, 
1 min at 60 °C

[26]

 CYP6P4-I236M CYP6P4_I236M_Forward 
(0.35 µM)
CYP6P4_I236M_Reverse 
(0.35 µM)
CYP6P4_I-Wild (0.2 µM)
CYP6P4_M-Mutant (0.2 
µM)

FAM
HEX

AGT​TTA​TGT​TTG​CGA​CCA​CGTT​
TCC​ACC​GTC​TCG​CGC​ACA​AC
TTC+ATGC+C+G+ATGC​
TTC+ATGC+C+C+ATGC​

1 cycle: 3 min at 95 °C
20 cycles: 15 s at 95 °C, 
30 s at 66 °C
23 cycles: 10 s at 95 °C, 
20 s at 58 °C, 11 s at 72 °C

[27]

 Zanzibar-like TE ZZB_Flank_A (0.35 µM)
ZZB_Flank_B (0.35 µM)
ZZB_Int_A (0.35 µM)
ZZB_Mutant (0.2 µM)
ZZB_WT (0.2 µM)

FAM
HEX

CAA​AAT​CAATGKCAC​RGA​GC
CGC​TAC​AAT​GAA​KGGA​AAG​TC
CAT​TAC​ATG​GCG​ACC​GTA​CCT​
A+C+ATTA+CA+CTT​TGT​+CA+GTA​
GATG+TT+CTTTK+T+CA+G+TATT​

1 cycle: 3 min at 95 °C
40 cycles: 10 s at 95 °C, 
20 s at 58 °C, 11 s at 72 °C

[27]

 CYP6AA1 duplication AA1_Dup1_ins1 (0.35 
µM)
AA1_Dup1_outs (0.35 
µM)
AA1_Dup1_ins2 (0.35 
µM)
AA1_Dup1_outs (0.2 µM)
AA1_Dup1_ins (0.2 µM)
AA1_Dup1_junct (0.2 
µM)

Cy5
HEX
FAM

CAG​TGC​GGT​ACG​CTC​GTT​AA
GGA​TCG​GTT​TAC​AGC​GGA​CG
CAT​CAC​CTG​TGC​TCG​CAA​RTT​
CCAT+CA+C+CGAA+CG
AGAA+CCT​GCA​+C+CAA​
A+CA+AT+TAATT+G+CAT+CGG​

1 cycle: 3 min at 95 °C
40 cycles: 10 s at 95 °C, 
20 s at 57 °C, 15 s at 72 °C

[27]

 2La inversion 23A2 (25 pmol/µL)
27A2 (25 pmol/µL)
DPCross 52 L+ (25 pmol/
µL)

CTC​GAA​GGG​ACA​GCG​AAT​TA
ACA​CAT​GCT​CCT​TGT​GAA​CG
GGT​ATT​TCT​GGT​CAC​TCT​GTTGG​

1 cycle: 2 min at 94 °C
35 cycles: 30 s at 94 °C, 
30 s at 60 °C, 45 s at 72 °C
1 cycle: 10 min at 72 °C

[25]

An. funestus s.l. mutation

 L119F-GSTe2 Forward (1 µM)
Reverse (1 µM)
L119 (0.5 µM)
119 F (0.5 µM)

HEX
FAM

AAC​AAT​TTT​TCA​TTT​CTT​ATT​CTC​ATT​
TAC​
CGA​CTC​GAT​CTT​CGG​GAA​TGTC​
AGG​AGC​GTA​TTC​TTT​TCT​AC
AGG​AGC​GTA​TTT​TTT​TCT​A

1 cycle: 10 min at 95 °C
40 cycles: 15 s at 92 °C 
and 1 min at 60 °C

[28]
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PCR reaction primers, probes and conditions for all 
assays are detailed in Table 1.

For L1014F-kdr, amplifications were performed in 
25 µL reactions containing 2 µL template DNA, 1 µL 
IPCF, 1 µL AltRev, 1 µL WT, 3 µL West, 4.5 µL H2O, and 
12.5 µL 2× Hot Start Taq PCR Master Mix (New Eng-
land Biolabs, UK). For L1014S-kdr, amplifications were 
performed in 25 µL reactions containing 2 µL template 
DNA, 2 µL IPCF, 2 µL AltRev, 2 µL WT, 2 µL East, 2.5 
µL H2O, and 12.5 µL 2× Hot Start Taq PCR Master Mix 
(New England Biolabs, UK). PCR products were sepa-
rated in 2% E-GelTM agarose gels with SYBR Safe (Invitro-
gen, UK). A control band at 314 base pairs (bp) indicated 
a successful reaction, a band at 214 bp indicated the sus-
ceptible wild type allele, and a band at 156 bp indicated 
the resistant allele. No template controls (NTCs) were 
run in parallel for all assays.

For N1575Y, PCR reactions were prepared with 10 µL 
of 2× QuantiTectTM Probe PCR master mix (Qiagen, 
UK), the primers and probes listed in Table 1, and 2 µL 
template DNA for a final reaction volume of 20 µL [24]. 
Positive controls from gDNA extracted from known An. 
gambiae sensu stricto (s.s.) with and without the N1575Y 
mutation were included in each run, alongside NTCs.

For G119S-ace1, PCR reactions were prepared with 5 
µL 2× PrimeTime® Gene Expression Master Mix (Inte-
grated DNA Technologies, UK), the primers and probes 
listed in Table 1, and 2 µL template DNA for a final reac-
tion volume of 10 µL [25]. Positive controls from gDNA 
extracted from known An. gambiae s.s. with and with-
out the G119S-ace1 mutation were included in each run, 
alongside NTCs.

For L43F-CYP4J5, PCR reactions were prepared with 
10 µL of 2× QuantiTectTM Probe PCR master mix (Qia-
gen, UK), the primers and probes listed in Table  1, and 
2 µL template DNA for a final reaction volume of 20 µL 
[26].

Three recently designed, independent, locked-nucleic 
acid (LNA) probe-based PCR assays were used to 

genotype the point mutation CYP6P4-I236M, the inser-
tion of the partial Zanzibar-like TE and the duplication of 
CYP6AA1 [27]. For each assay, PCR reactions were pre-
pared with 5 µL 2× PrimeTime® Gene Expression Mas-
ter Mix (Integrated DNA Technologies, UK), the primers 
and probes listed in Table 1, and 2 µL template DNA for a 
final reaction volume of 10 µL.

For the 2La inversion region in An. gambiae s.l. which 
contains L43F-CYP4J5 [26], amplifications were per-
formed in 25 µL reactions containing 12.5 µL 2× Hot 
Start Taq PCR Master Mix (New England Biolabs, UK), 
the primers listed in Table  1, and 2  µL template DNA 
[25]. PCR products were separated in 2% E-GelTM aga-
rose gels with SYBR Safe (Invitrogen, UK). A band at 
492 bp or 207 bp indicated the 2La or 2L+a arrangement, 
respectively.

Anopheles funestus s.l. target site mutation screening
Mosquito individuals morphologically identified as An. 
funestus s.l. (n = 163) were screened for three metabolic 
mutations: L119F-GSTe2, CYP6P9a and CYP6P9b.

For L119F-GSTe2, PCR reactions were prepared with 
10 µL of 2× QuantiTectTM Probe PCR master mix (Qia-
gen, UK), the primers and probes listed in Table  1, and 
2 µL template DNA for a final reaction volume of 20 µL 
[28].

For CYP6P9a, PCR reactions were performed in a final 
volume of 25 µL, containing 2× Hot Start Taq PCR Mas-
ter Mix (New England Biolabs, UK), the primers listed 
in Table 1, and 2 µL template DNA [18]. Ten microlitres 
of each PCR product were digested by adding 1 µL 10× 
buffer TaqI, 0.2 µL TaqI restriction enzyme (Thermo Sci-
entific, UK) and 3.8 µL of H2O. Digests were incubated 
at 65 °C for 4 h. Digested products were separated in 2% 
E-GelTM agarose gels with SYBR Safe (Invitrogen, UK). A 
band at 450 bp indicated the susceptible wild type allele, 
a band at 350 bp and 100 bp indicated the resistant allele.

For CYP6P9b, PCR reactions were performed in a 
final volume of 25 µL, containing 2× Hot Start Taq 

Table 1  (continued)

Primers and probes 
(concentrations)

5′ modifications Sequences Reaction conditions References

 CYP6P9a Forward (1 µM)
Reverse (1 µM)

TCC​CGA​AAT​ACA​GCC​TTT​CAG​
ATT​GGT​GCC​ATC​GCT​AGA​AG

1 cycle: 95 °C for 3 min
40 cycles: 94 °C for 30 s, 
55 °C for 30 s, 72 °C for 
1 min
1 cycle: 72 °C for 10 min

[18]

 CYP6P9b Forward (1 µM)
Reverse (1 µM)

CCC​CCA​CAG​GTG​GTA​ACT​ATC​TGA​A
TTA​TCC​GTA​ACT​CAA​TAG​CGATG​

1 cycle: 95 °C for 3 min
40 cycles: 94 °C for 30 s, 
58 °C for 30 s, 72 °C for 
1 min
1 cycle: 72 °C for 10 min

[19]
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PCR Master Mix (New England Biolabs, UK), the prim-
ers listed in Table  1, and 2  µL template DNA [19]. Ten 
microlitres of each PCR product were  digested by adding 
1 µL CutSmart buffer, 0.2 µL Tsp45I restriction enzyme 
(New England Biolabs, UK) and 3.8 µL of H2O. Digests 
were incubated at 65 °C for 4 h. Digested products were 
separated in 2% E-GelTM agarose gels with SYBR Safe 
(Invitrogen, UK). A band at 550 bp indicated the resistant 
allele and two bands at 400 bp and 150 bp indicated the 
susceptible wild type allele.

For both CYP6P9a (n = 8) and CYP6P9b (n = 8), PCR-
RFLP results for a subset of resistant and susceptible 
individuals were confirmed by sequencing as previ-
ously described [29]. In brief, PCR products used in the 
enzyme digests were submitted to Source BioScience 
(Source BioScience Plc, Nottingham, UK) for PCR reac-
tion clean-up, followed by chain termination sequenc-
ing. Sequencing analysis was conducted in Geneious 
Prime®2021.1.1.

Data analysis
Stratagene MxPro qPCR software (Agilent Technolo-
gies, UK) was used to produce standard curves for gen-
otypic analysis. All statistical analyses were conducted 
in Stata/SE 17.0, including Pearson’s Chi-squared test 
to investigate deviations from Hardy–Weinberg equi-
librium and associations between study site, presence/
absence of resistance mutation and P. falciparum infec-
tion prevalence. Analysis of the triple LNA PCR assay 
to detect the point mutation CYP6P4-I236M, the inser-
tion of the partial Zanzibar-like TE and the duplication 
of CYP6AA1, was conducted according to Njoroge et al. 
[27]. Heterozygotes and homozygotes for the CYP6AA1 
duplication were differentiated by analysis of the ratio of 
the HEX, FAM and Cy5 Ct values: 2*Cy5-(FAM+HEX); 
ratio values were then arranged in ascending order, plot-
ted on a line graph and heterozygotes and homozygotes 
differentiated by a change in the line gradient.

Results
Mosquito species identification and P. falciparum screening
A subset of eight individual An. gambiae s.l. each from 
Tchonka, Tushunguti and Kibali and An. funestus s.l. 
from Tchonka and Tushunguti were identified to species-
level by PCR; all were determined to be An. gambiae 
s.s. (24/24) and An. funestus s.s. (16/16), respectively. P. 
falciparum infection rate (indicative of any parasite life-
cycle stage) was 11.04% (18/163) and 10.94%   (21/192) 
among An. funestus s.l. and An. gambiae s.l., respectively. 
By study site, P. falciparum infection rate for An. funes-
tus s.l. was not significantly different between Tchonka 
(12.03%; 16/133) and Tushunguti (6.7%; 2/30) (χ2 = 0.717, 
p = 0.397), nor for An. gambiae s.l. (13.0%; 17/131 in 

Tchonka, 6.25%; 2/32 in Tushunguti and 6.9%; 2/29 in 
Kibali; χ2 = 1.77, p = 0.413).

Anopheles gambiae s.l. target site mutation screening
Mosquito individuals morphologically identified as An. 
gambiae s.l. were screened for the presence of eight 
mutations (Tables  2 and 3). L1014F-kdr was present 
in 75.9% (142/187) of An. gambiae s.l. screened; 50% 
(71/142) were homozygous L1014F/L1014F and 50% 
were heterozygous L1014F/L1014S (Table  2). L1014S-
kdr was present in 56.7% (106/187) of An. gambiae s.l. 
tested; 33.0% (35/106) were homozygous L1014S/L1014S 
and 67.0% (71/106) were heterozygous L1014F/L1014S 
(Table  2). No individuals were heterozygous for either 
L1014F or L1014S mutation alone. By study site there 
was a clear predominance of L1014F/L1014F (52.4%; 
66/126) and L1014F/L1014S (44.4%; 56/126) in Tchonka, 
and L1014S/L1014S in Kibali (75.9%; 22/29) (Table  2). 
In Kibali, there was evidence for selection acting on this 
locus (χ2 = 22.86, p < 0.0001). N1575Y was not detected in 
any individual tested (190/190).

L43F-CYP4J5 was identified in 83.9% (156/186) of An. 
gambiae s.l. tested; 3.8% (6/156) were homozygous and 
96.2% (150/156) were heterozygous (Table 3). Across the 
three study sites, L43F-CYP4J5 allele frequency ranged 
from 0.42 to 0.52, with evidence for significant devia-
tions from Hardy–Weinberg equilibrium (χ2 = 38.26, 
28.24 and 15.75 for Tchonka, Tushunguti and Kibali, 
respectively; p < 0.0001 for all). Overall, 91.8% (168/183) 
of An. gambiae s.l. tested harboured the 2L+a inversion; 
42.1% (77/183) were 2L+a/+a homozygous and 49.7% 
(91/183) were 2La+a heterozygous (Table 4). Across the 
three study sites, evidence for ongoing selection for the 
2La inversion was observed in Tchonka only (χ2 = 15.24, 
p < 0.0001).

G119S-ace1 was detected in 30.9% (59/191) of An. 
gambiae s.l. tested; 3.4% (2/59) were homozygous and 
96.6% (57/59) were heterozygous (Table  3). There was 
no evidence for ongoing selection for G119S-ace1 in any 
study site, with the resistant allele frequency ranging 
from 0.11 to 0.19 (Table 3).

For An. gambiae s.l., there was no significant associa-
tion with presence of any resistant allele and P. falcipa-
rum infection for L1014F-kdr (χ2 = 1.15, p = 0.283), 
L1014S-kdr (χ2 = 1.75, p = 0.186), L43F-CYP4J5 
(χ2 = 1.30, p = 0.254) or G119S-ace1 (χ2 = 3.05, p = 0.081); 
nor 2L+a inversion and P. falciparum infection (χ2 = 0.32, 
p = 0.573).

The triple LNA PCR assay, used to genotype the point 
mutation CYP6P4-I236M, the insertion of the partial 
Zanzibar-like TE and the duplication of CYP6AA1, iden-
tified high frequencies of the triple homozygote mutant 
in all study sites (Table  5). Furthermore, the double 
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mutant CYP6P4-I236M-ZZB-TE was detected in nine 
An. gambiae s.l. from Tchonka.

Anopheles funestus s.l. metabolic  mutation screening
Mosquito individuals morphologically identified as An. 
funestus s.l. were screened for three mutations in meta-
bolic genes (Table  6). L119F-GSTe2 was not detected 
in any individual tested (Table  6). CYP6P9a was pre-
sent in 100% of An. funestus s.l. tested (152/152); 67.8% 
(103/152) were homozygous and 32.2% (49/152) were 
heterozygous (Table  6). In Tchonka CYP6P9a allele fre-
quency was 0.82, with significant deviations from Hardy–
Weinberg equilibrium (χ2 = 6.59; p = 0.01); no evidence 
for ongoing selection was observed in Tushunguti 
(Table 6). CYP6P9b was present in 94.9% of An. funestus 
s.l. screened (131/138); 70.2% (92/131) were homozy-
gous and 29.8% (39/131) were heterozygous (Table  6). 
In Tushunguti CYP6P9b allele frequency was 0.65, with 
significant deviations from Hardy–Weinberg equilibrium 
(χ2 = 4.0; p = 0.05); no evidence for ongoing selection was 
observed in Tchonka (Table 6). Presence of the CYP6P9b 
resistant allele was significantly associated with P. falcipa-
rum infection (χ2 = 7.03, p = 0.008), while presence of the 
CYP6P9a resistant allele was not (χ2 = 1.39, p = 0.238).

Discussion
By comparison to neighbouring malaria-endemic coun-
tries, there is a considerable paucity of available molec-
ular insecticide resistance data in the DRC. This study 
assessed the frequency of 11 resistance mutations among 
field populations of An. gambiae s.l. and An. funestus s.l., 

to provide additional information on resistance mecha-
nisms in the eastern DRC, and to critically evaluate the 
utility of these markers for prospective country-wide 
resistance monitoring.

Because the NMCP vector control strategy relies 
almost exclusively on universal coverage of ITNs, high 
levels of pyrethroid resistance and cross-resistance to 
DDT are widespread, with some evidence for increasing 
pyrethroid resistance intensity following distribution of 
ITNs in parts of Kinshasa province [14]. Unsurprisingly, 
the pyrethroid-associated L1014F-kdr and L1014S-kdr 
mutations in the voltage-gated sodium channel (VGSC) 
are present in An. gambiae s.l. across the country and 
can be found in high frequencies in some locales [11, 
14]. Prior to this study, molecular resistance monitoring 
had been undertaken in Kibali in 2011–2012, reporting 
a moderate prevalence of L1014S-kdr (0.61) and lower 
levels of L1014F-kdr (0.1) and L1014F/S-kdr (0.26) [12] 
(Additional file  1: Table  S1). The L1014S-kdr allele fre-
quency of 0.78 in this dataset from 2017-2019 supports 
these previous surveys, with evidence for ongoing selec-
tion of this allele. One additional study has been per-
formed in Tchonka from April–November, 2018 [11] 
indicating almost complete fixation of L1014F-kdr (0.98), 
which was also consistent with this study’s observations 
of slightly lower frequencies of this mutation (0.75), 
which may have risen over time under selection. The pre-
dictive association between L1014F-kdr and L1014S-kdr 
and resistance phenotype (i.e. survival or death follow-
ing an insecticide bioassay or exposure to a vector con-
trol intervention) is not absolute [30], but both mutations 

Table 4  An. gambiae s.l. 2La karyotypes from three study sites in East DRC

a Sample numbers adjusted to reflect non-amplifiers per assay

Study site (Province) # Mosquitoes 
testeda

2La/a 2La+a hybrid 2L+a/+a χ2 test p-value

Tchonka (Sud-Kivu) 125 1 68 56 15.24 < 0.0001

Tushunguti (Sud-Kivu) 30 9 10 11 3.27 0.07

Kibali (Haut-Uélé) 28 5 13 10 0.05 0.83

Table 5  An. gambiae s.l. triple mutant genotype (CYP6P4-I236M-Zanzibar-like TE-CYP6AA1 duplication) frequencies from three study 
sites in East DRC

Study site (Province) Homozygote CYP6P4-
I236M-ZZB-TE wild 
type

Double CYP6P4-
I236M-ZZB-TE 
mutant

Heterozygote 
CYP6P4-I236M-
ZZB-TE-CYP6AA1 
duplication (triple 
mutant)

Homozygote CYP6P4-
I236M-ZZB-TE-
CYP6AA1 duplication 
(triple mutant)

CYP6P4-I236M-ZZB-TE-
CYP6AA1 duplication 
(triple mutant) 
frequency

Tchonka (Sud-Kivu) 0 9 4 33 0.76

Tushunguti (Sud-Kivu) 1 0 0 1 0.5

Kibali (Haut-Uélé) 0 0 1 14 0.97
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have been proposed to play a larger contributing role in 
resistance to type I (permethrin) versus type II (alpha-
cypermethrin and deltamethrin) pyrethroids [31], which 
broadly aligns with observations of lower permethrin 
susceptibility, compared to deltamethrin or alpha-cyper-
methrin, in some local vector populations [10, 11, 14, 32]; 
it is also important to note that differences in discrimi-
nating concentrations of pyrethroids used for resistance 
monitoring and other coinciding resistance mechanisms 
may also explain some of these discrepancies [33]. This 
study also demonstrated a proportion of An. gambiae 
s.l. individuals with both L1014F-kdr and L1014S-kdr 
mutations co-occurring in Sud-Kivu province. This phe-
nomenon has also been observed in Kinshasa [14] and 
Nord-Ubangi provinces [10], as well as in other areas of 
East and West Africa [34, 35]. While the biological impli-
cations of harbouring both resistant alleles are unclear, 
it adds an additional complication to routine genotypic 
surveillance and supports the use of newly-developed 
single detection assays [10]. A second mutation in the 
VGSC, N1575Y, located downstream of L1014F-kdr, can 
have a synergistic effect on pyrethroid and DDT resist-
ance [24, 36], but was not observed in any An. gambiae 
s.l. screened. It has only been reported once previously 
in the DRC, at very low frequencies in An. gambiae s.s. 
and Anopheles coluzzii from Nord-Ubangi [10]. The 
recent characterization of 20 additional non-synonymous 
nucleotide substitutions in the VGSC has revealed that 
the molecular basis of target-site pyrethroid resistance 
in malaria vectors may be more complex than previously 
thought [37]. This is of particular relevance in the DRC 
where high genetic diversity in kdr haplotypes has been 
described, suggesting that these resistance alleles may 
have either originated in central Africa and spread across 
the continent or converged in the DRC and persisted 
without replacement [38].

In all three study sites, a non-synonymous substitution 
in CYP4J5 was identified at moderate levels (0.42–0.52), 
for the first time in the DRC. The point mutation used in 
this assay is in tight linkage disequilibrium (LD) with the 
L43F-CYP4J5 variant, which has previously been associ-
ated with resistance to lambda-cyhalothrin in An. gam-
biae s.s. from Uganda and to deltamethrin in Uganda and 
Kenya [26]. Furthermore, this mutation has been shown 
to be highly diagnostic of extreme pyrethroid resistance, 
with survivors of two hour deltamethrin exposure sig-
nificantly more likely to have L43F-CYP4J5, compared 
to those killed within one hour [26]. L43F-CYP4J5 lies 
within the 2La+a inversion in An. gambiae s.l., which has 
previously been correlated with aspects of vector bio-
nomics and competence, including adaptation to arid-
ity or humidity [39], biting and resting behaviour [40] 
and susceptibility to P. falciparum infection [41]. In this 

study, evidence for ongoing selection of this inversion 
was apparent in Tchonka, which may in part explain the 
deviations from Hardy–Weinberg equilibrium observed 
for L43F-CYP4J5 in this site, but not in Tushunguti or 
Kibali. Importantly, L43F-CYP4J5 may warrant further 
monitoring as a potential predictor of extreme pyrethroid 
resistance in the DRC.

This study also presents the first report of G119S-ace1 
from all study sites at low frequencies (0.11–0.19), which 
did not appear to be under local selection at the time of 
sample collection. Duplication of the G119S-ace1 muta-
tion can enhance resistance to organophosphates and 
carbamates [42], including pirimiphos-methyl which is 
widely used in IRS campaigns [43], by reducing sensitiv-
ity to the neurotransmitter acetylcholinesterase [44]. In 
these study sites, limited insecticide spraying operations 
have been conducted, except in Kibali in the gold min-
ing region. It is difficult to infer the emergence of G119S-
ace1 in direct response to public health insecticides; 
rather this may have been selected under the pressure of 
widespread, unregulated agricultural pesticide use [45, 
46]. Finally in An. gambiae s.l. the presence of a triple 
mutant haplotype (a non-synonymous SNP in CYP6P4, 
an upstream insertion of a partial Zanzibar-like TE and 
duplication of the CYP6AA1 gene), associated with high 
levels of deltamethrin resistance [27], was identified at 
high frequencies across these study sites and represents 
an additional promising diagnostic marker for future sur-
veillance of pyrethroid resistance.

Previous studies in the DRC have reported overex-
pression of CYP6P9a and CYP6P9b in An. funestus s.l. 
as mechanisms of pyrethroid and DDT resistance in 
Kinshasa and Haut-Uélé provinces [12, 13]. The pres-
ence of cis-regulatory polymorphisms in CYP6P9a and 
CYP6P9b, which drive overexpression, have been cor-
related with reduced efficacy of deltamethrin ITNs [18, 
19]. Using two DNA-based assays, moderate to high fre-
quencies of both resistance alleles were identified, with 
potential evidence for ongoing selection of CYP6P9a in 
Tchonka and CYP6P9b in Tushunguti. For both An. gam-
biae s.l. and An. funestus s.l., the impact of some of these 
mutations on intervention effectiveness, coupled with 
recent data demonstrating partial restoration of pyre-
throid susceptibility following PBO pre-exposure in bio-
assays [8, 10], improved killing of populations containing 
triple mutants with PBO-ITNs [27] and high mortal-
ity to the putative diagnostic doses of chlorfenapyr [47], 
strongly support targeted deployment of next-generation 
synergist- and  dual-active ingredient ITNs to control 
pyrethroid-resistant vector populations in the DRC.

Consistent with other   reports from the DRC, very 
high P. falciparum infection rates were detected, which 
were comparable between both An. gambiae s.l. and An. 
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funestus s.l. across study sites (10.94–11.04%); P. falci-
parum infection prevalence was twice as high for both 
species in Tchonka compared to Tushunguti. While this 
study used PCR to assess overall vector infection rate, 
comparably high sporozoite rates in An. gambiae s.l., 
measured by ELISA, have been previously described 
from nearby Kashuga, Nord-Kivu (13.9%) [32]. While 
malaria transmission is known to be highly heterogene-
ous across the country, these observations of high Plas-
modium infection levels in pyrethroid-resistant vector 
populations, which may be less responsive to standard 
ITNs, are of considerable concern.

Conclusions
Real-time tracking of insecticide resistance is currently 
limited by the lack of diagnostic markers of interven-
tion efficacy and difficulties dissecting the relative 
contributions of different mechanisms to resistance 
phenotype, particularly those involved in metabolic 
resistance. This study screened the most up-to-date 
panel of DNA-based resistance markers for target site 
and metabolic resistance in An. gambiae s.l. and An. 
funestus s.l. populations from the eastern DRC, where 
resistance data is lacking. Several new candidate mark-
ers (L43F-CYP4J5, G119S-ace1, the triple mutant: 
CYP6P4-I236M-Zanzibar-like TE-CYP6AA1 duplica-
tion, CYP6P9a and CYP6P9b) were identified, which 
are diagnostic of resistance to major insecticide classes 
used for malaria vector control and/or reduced pyre-
throid ITN efficacy, and warrant future, larger-scale 
monitoring in the DRC to inform vector control deci-
sions by the NMCP.
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