
RESEARCH ARTICLE

Assessing the performance of real-time

epidemic forecasts: A case study of Ebola in

the Western Area region of Sierra Leone,

2014-15

Sebastian FunkID
1,2*, Anton CamachoID

1,2,3, Adam J. Kucharski1,2, Rachel LoweID
1,2,4,

Rosalind M. EggoID
1,2, W. John Edmunds1,2

1 Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical

Medicine, London, United Kingdom, 2 Department of Infectious Disease Epidemiology, London School of

Hygiene & Tropical Medicine, London, United Kingdom, 3 Epicentre, Paris, France, 4 Barcelona Institute for

Global Health (ISGlobal), Barcelona, Spain

* sebastian.funk@lshtm.ac.uk

Abstract

Real-time forecasts based on mathematical models can inform critical decision-making dur-

ing infectious disease outbreaks. Yet, epidemic forecasts are rarely evaluated during or

after the event, and there is little guidance on the best metrics for assessment. Here, we pro-

pose an evaluation approach that disentangles different components of forecasting ability

using metrics that separately assess the calibration, sharpness and bias of forecasts. This

makes it possible to assess not just how close a forecast was to reality but also how well

uncertainty has been quantified. We used this approach to analyse the performance of

weekly forecasts we generated in real time for Western Area, Sierra Leone, during the

2013–16 Ebola epidemic in West Africa. We investigated a range of forecast model variants

based on the model fits generated at the time with a semi-mechanistic model, and found

that good probabilistic calibration was achievable at short time horizons of one or two weeks

ahead but model predictions were increasingly unreliable at longer forecasting horizons.

This suggests that forecasts may have been of good enough quality to inform decision mak-

ing based on predictions a few weeks ahead of time but not longer, reflecting the high level

of uncertainty in the processes driving the trajectory of the epidemic. Comparing forecasts

based on the semi-mechanistic model to simpler null models showed that the best semi-

mechanistic model variant performed better than the null models with respect to probabilistic

calibration, and that this would have been identified from the earliest stages of the outbreak.

As forecasts become a routine part of the toolkit in public health, standards for evaluation of

performance will be important for assessing quality and improving credibility of mathemati-

cal models, and for elucidating difficulties and trade-offs when aiming to make the most use-

ful and reliable forecasts.
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Author summary

During epidemics, reliable forecasts can help allocate resources effectively to combat the

disease. Various types of mathematical models can be used to make such forecasts. In

order to assess how good the forecasts are, they need to be compared to what really hap-

pened. Here, we describe different approaches to assessing how good forecasts were that

we made with mathematical models during the 2013–16 West African Ebola epidemic,

focusing on one particularly affected area of Sierra Leone. We found that, using the type

of models we used, it was possible to reliably predict the epidemic for a maximum of one

or two weeks ahead, but no longer. Comparing different versions of our model to simpler

models, we further found that it would have been possible to determine the model that

was most reliable at making forecasts from early on in the epidemic. This suggests that

there is value in assessing forecasts, and that it should be possible to improve forecasts by

checking how good they are during an ongoing epidemic.

Introduction

Forecasting the future trajectory of cases during an infectious disease outbreak can make an

important contribution to public health and intervention planning. Infectious disease model-

lers are now routinely asked for predictions in real time during emerging outbreaks [1]. Fore-

casting targets can revolve around expected epidemic duration, size, or peak timing and

incidence [2–5], geographical distribution of risk [6], or short-term trends in incidence [7, 8].

However, forecasts made during an outbreak are rarely investigated during or after the event

for their accuracy, and only recently have forecasters begun to make results, code, models and

data available for retrospective analysis.

The growing importance of infectious disease forecasts is epitomised by the growing num-

ber of so-called forecasting challenges. In these, researchers compete in making predictions for

a given disease and a given time horizon. Such initiatives are difficult to set up during unex-

pected outbreaks, and are therefore usually conducted on diseases known to occur seasonally,

such as dengue [7, 9, 10] and influenza [11]. The Ebola Forecasting Challenge was a notable

exception, triggered by the 2013–16 West African Ebola epidemic and set up in June 2015.

Since the epidemic had ended in most places at that time, the challenge was based on simulated

data designed to mimic the behaviour of the true epidemic instead of real outbreak data. The

main lessons learned were that 1) ensemble estimates outperformed all individual models, 2)

more accurate data improved the accuracy of forecasts and 3) considering contextual informa-

tion such as individual-level data and situation reports improved predictions [12].

In theory, infectious disease dynamics should be predictable within the timescale of a single

outbreak [13]. In practice, however, providing accurate forecasts during emerging epidemics

comes with particular challenges such as data quality issues and limited knowledge about the

processes driving growth and decline in cases. In particular, uncertainty about human beha-

vioural changes and public health interventions can preclude reliable long-term predictions

[14, 15]. Yet, short-term forecasts with an horizon of a few generations of transmission (e.g., a

few weeks in the case of Ebola), can yield important information on current and anticipated

outbreak behaviour and, consequently, guide immediate decision making.

The most recent example of large-scale outbreak forecasting efforts was during the 2013–16

Ebola epidemic, which vastly exceeded the burden of all previous outbreaks with almost

30,000 reported cases resulting in over 10,000 deaths in the three most affected countries:

Guinea, Liberia and Sierra Leone. During the epidemic, several research groups provided
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forecasts or projections at different time points, either by generating scenarios believed plausi-

ble, or by fitting models to the available time series and projecting them forward to predict the

future trajectory of the outbreak [16–26]. One forecast that gained particular attention during

the epidemic was published in the summer of 2014, projecting that by early 2015 there might

be 1.4 million cases [27]. This number was based on unmitigated growth in the absence of fur-

ther intervention and proved a gross overestimate, yet it was later highlighted as a “call to

arms” that served to trigger the international response that helped avoid the worst-case sce-

nario [28]. While that was a particularly drastic prediction, most forecasts made during the

epidemic were later found to have overestimated the expected number of cases, which pro-

vided a case for models that can generate sub-exponential growth trajectories [29, 30].

Traditionally, epidemic forecasts are assessed using aggregate metrics such as the mean

absolute error (MAE) [12, 31, 32]. This, however, only assesses how close the most likely or

average predicted outcome is to the true outcome. The ability to correctly forecast uncertainty,

and to quantify confidence in a predicted event, is not assessed by such metrics. Appropriate

quantification of uncertainty, especially of the likelihood and magnitude of worst case scenar-

ios, is crucial in assessing potential control measures. Methods to assess probabilistic forecasts

are now being used in other fields, but are not commonly applied in infectious disease epide-

miology [33, 34].

We produced weekly sub-national real-time forecasts during the Ebola epidemic, starting

on 28 November 2014. Plots of the forecasts were published on a dedicated web site and

updated every time a new set of data were available [35]. They were generated using a model

that has, in variations, been used to forecast bed demand during the epidemic in Sierra Leone

[21] and the feasibility of vaccine trials later in the epidemic [36, 37]. During the epidemic, we

provided sub-national forecasts for the three most affected countries (at the level of counties in

Liberia, districts in Sierra Leone and prefectures in Guinea).

Here, we apply assessment metrics that elucidate different properties of forecasts, in partic-

ular their probabilistic calibration, sharpness and bias. Using these methods, we retrospectively

assess the forecasts we generated for Western Area in Sierra Leone, an area that saw one of the

greatest number of cases in the region and where our model informed bed capacity planning.

Materials and methods

Ethics statement

This study has been approved by the London School of Hygiene & Tropical Medicine Research

Ethics Committee (reference number 8627).

Data sources

Numbers of suspected, probable and confirmed Ebola cases at sub-national levels were initially

compiled from daily Situation Reports (or SitReps) provided in PDF format by Ministries of

Health of the three affected countries during the epidemic [21]. Data were automatically

extracted from tables included in the reports wherever possible and otherwise manually con-

verted by hand to machine-readable format and aggregated into weeks. From 20 November

2014, the World Health Organization (WHO) provided tabulated data on the weekly number

of confirmed and probable cases. These were compiled from the patient database, which was

continuously cleaned and took into account reclassification of cases avoiding potential double-

counting. However, the patient database was updated with substantial delay so that the num-

ber of reported cases would typically be underestimated in the weeks leading up to the date at

which the forecast was made. Because of this, we used the SitRep data for the most recent
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weeks until the latest week in which the WHO case counts either equalled or exceeded the

SitRep counts. For all earlier times, the WHO data were used.

Transmission model

We used a semi-mechanistic stochastic model of Ebola transmission described previously [21,

38]. Briefly, the model was based on a Susceptible–Exposed–Infectious–Recovered (SEIR)

model with fixed incubation period of 9.4 days [39], following an Erlang distribution with

shape 2. The country-specific infectious period was determined by adding the average delay to

hospitalisation to the average time from hospitalisation to death or discharge, weighted by the

case-fatality rate. Cases were assumed to be reported with a stochastic time-varying delay. On

any given day, this was given by a gamma distribution with mean equal to the country-specific

average delay from onset to hospitalisation and standard deviation of 0.1 day. We allowed

transmission to vary over time in order to capture behavioural changes in the community,

public health interventions or other factors affecting transmission for which information was

not available at the time. The time-varying transmission rate was modelled using a daily

Gaussian random walk with fixed volatility (or standard deviation of the step size) which was

estimated as part of the inference procedure (see below). We log-transformed the transmission

rate to ensure it remained positive. The behaviour in time can be written as

d logbt ¼ sdWt ð1Þ

where βt is the time-varying transmission rate, Wt is the Wiener process and σ the volatility of

the transmission rate. The basic reproduction number R0,t at any time was obtained by multi-

plying βt with the average infectious period. In fitting the model to the time series of cases we

extracted posterior predictive samples of trajectories, which we used to generate forecasts.

Model fitting

Each week, we fitted the model to the available case data leading up to the date of the forecast.

Observations were assumed to follow a negative binomial distribution. Since the ssm software

used to fit the model only implemented a discretised normal observation model, we used a

normal approximation of the negative binomial for observations, potentially introducing a

bias at small counts. Four parameters were estimated in the process: the initial basic reproduc-

tion number R0 (uniform prior within (1, 5)), initial number of infectious people (uniform

prior within (1, 400)), overdispersion of the (negative binomial) observation process (uniform

prior within (0, 0.5)) and volatility of the time-varying transmission rate (uniform prior within

(0, 0.5)). We confirmed from the posterior distributions of the parameters that these priors did

not set any problematic bounds. Samples of the posterior distribution of parameters and state

trajectories were extracted using particle Markov chain Monte Carlo [40] as implemented in

the ssm library [41]. For each forecast, 50,000 samples were extracted and thinned to 5000.

Predictive model variants

We used the samples of the posterior distribution generated using the Monte Carlo sampler to

produce predictive trajectories, using the final values of estimated state trajectories as initial

values for the forecasts and simulating the model forward for up to 10 weeks. While all model

fits were generated using the same model described above, we tested a range of different pre-

dictive model variants to assess the quality of ensuing predictions. We tested variants where

trajectories were stochastic (with demographic stochasticity and a noisy reporting process), as

well as ones where these sources of noise were removed for predictions. We further tested pre-

dictive model variants where the transmission rate continued to follow a random walk
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(unbounded, on a log-scale), as well as ones where the transmission rate stayed fixed during

the forecasting period. When the transmission rate remained fixed for prediction, we tested

variants where we used the final value of the transmission rate and ones where this value was

averaged over a number of weeks leading up to the final fitted point, to reduce the potential

influence of the last time point, at which the transmission rate may not have been well identi-

fied. We tested variants where the predictive trajectory was based on the final values and start

at the last time point, and ones where it started at the penultimate time point, which could,

again, be expected to be better informed by the data. For each model and forecast horizon, we

generated point-wise medians and credible intervals from the sample trajectories.

Null models

To assess the performance of the semi-mechanistic transmission model we compared it to

three simpler null models: two representing the constituent parts of the semi-mechanistic

model, and a non-mechanistic time series model. For the first null model, we used a determin-
istic model that only contained the mechanistic core of the semi-mechanistic model, that is a

deterministic SEIR model with fixed transmission rate and parameters otherwise the same as

in the model described before [21]:

dS
dt
¼ �

R0

D

Ic þ Ih
N

S ð2Þ

dE1

dt
¼ �

R0

D

Ic þ Ih
N

S � 2nE1
ð3Þ

dE2

dt
¼ 2nE1 � 2nE2

ð4Þ

dIc
dt
¼ 2nE2 � tIc ð5Þ

dIh
dt
¼ tIc � gIh ð6Þ

dR
dt
¼ gIh ð7Þ

dA
dt
¼ tIc ð8Þ

Yt � NBðAt � At� 1; �Þ ð9Þ

where Yt are observations at times t, S is the number susceptible, E the number infected but

not yet infectious (split into two compartments for Erlang-distributed permanence times with

shape 2), Ic is the number infectious and not yet notified, Ih is the number infectious and noti-

fied, R is the number recovered or dead, A is an accumulator for incidence, R0 is the basic

reproduction number, Δ = 1/τ + 1/ν is the mean time from onset to outcome, 1/ν is the mean

incubation period, 1/τ + 1/γ is the mean duration of infectiousness, 1/τ is the mean time from

onset to hospitalisation 1/γ the mean duration from notification to outcome and NB(μ, ϕ) is a

negative binomial distribution with mean μ and overdispersion ϕ. All these parameters were

informed by individual patient observations [39] except the overdispersion in reporting ϕ, and
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the basic reproduction number R0, which were inferred using Markov-chain Monte Carlo

with the same priors as in the semi-mechanistic model.

For the second null model, we used an unfocused model where the weekly incidence Z itself

was modelled using a stochastic volatility model (without drift), that is a daily Gaussian ran-

dom walk, and forecasts generated assuming the weekly number of new cases was not going to

change:

d logZ ¼ sdW ð10Þ

Yt � NBðZt; �Þ ð11Þ

where Y are observations, σ is the intensity of the random walk and ϕ the overdispersion of

reporting (both estimated using Markov-chain Monte Carlo) and dW is the Wiener process.

Lastly, we used a null model based on a non-mechanistic Bayesian autoregressive AR(1)

time series model:

atþ1 � N ð�at; saÞ ð12Þ

Y�t � N ðat; sY� Þ ð13Þ

Yt ¼ max ð0; ½Y�t �Þ ð14Þ

where ϕ, σα and σY� were estimated using Markov-chain Monte Carlo, and [. . .] indicates

rounding to the nearest integer. An alternative model with Poisson distributed observations

was discarded as it yielded poorer predictive performance.

The deterministic and unfocused models were implemented in libbi [42] via the RBi [43]

and RBi.helpers [44] R packages [45]. The Bayesian autoregressive time series model was

implemented using the bsts package [46].

Metrics

The paradigm for assessing probabilistic forecasts is that they should maximise the sharpness

of predictive distributions subject to calibration [47]. We therefore first assessed model calibra-

tion at a given forecasting horizon, before assessing their sharpness and other properties.

Calibration or reliability [48] of forecasts is the ability of a model to correctly identify its

own uncertainty in making predictions. In a model with perfect calibration, the observed data

at each time point look as if they came from the predictive probability distribution at that time.

Equivalently, one can inspect the probability integral transform of the predictive distribution

at time t [49],

ut ¼ FtðxtÞ ð15Þ

where xt is the observed data point at time t 2 t1, . . ., tn, n being the number of forecasts, and

Ft is the (continuous) predictive cumulative probability distribution at time t. If the true proba-

bility distribution of outcomes at time t is Gt then the forecasts Ft are said to be ideal if Ft = Gt

at all times t. In that case, the probabilities ut are distributed uniformly.

In the case of discrete outcomes such as the incidence counts that were forecast here, the

PIT is no longer uniform even when forecasts are ideal. In that case a randomised PIT can be

used instead:

ut ¼ PtðktÞ þ vðPtðktÞ � Ptðkt � 1ÞÞ ð16Þ

where kt is the observed count, Pt(x) is the predictive cumulative probability of observing
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incidence k at time t, Pt(−1) = 0 by definition and v is standard uniform and independent of k.

If Pt is the true cumulative probability distribution, then ut is standard uniform [50]. To assess

calibration, we applied the Anderson-Darling test of uniformity to the probabilities ut. The

resulting p-value was a reflection of how compatible the forecasts were with the null hypothesis

of uniformity of the PIT, or of the data coming from the predictive probability distribution.

We calculated the mean p-value of 10 samples from the randomised PIT and found the corre-

sponding Monte-Carlo error to be negligible (maximum standard deviation: sp = 0.003). We

considered that there was no evidence to suggest a forecasting model was miscalibrated if the

p-value found was greater than a threshold of p� 0.1, some evidence that it was miscalibrated

if 0.01 < p< 0.1, and good evidence that it was miscalibrated if p� 0.01. In this context it

should be noted, though, that uniformity of the (randomised) PIT is a necessary but not suffi-

cient condition of calibration [47]. The p-values calculated here merely quantify our ability to

reject a hypothesis of good calibration, but cannot guarantee that a forecast is calibrated.

Because of this, other indicators of forecast quality must be considered when choosing a model

for forecasts.

All of the following metrics are evaluated at every single data point. In order to compare the

forecast quality of models, they were averaged across the time series.

Sharpness is the ability of the model to generate predictions within a narrow range of possi-

ble outcomes. It is a data-independent measure, that is, it is purely a feature of the forecasts

themselves. To evaluate sharpness at time t, we used the normalised median absolute deviation

about the median (MADN) of y

StðPtÞ ¼
1

0:675
median jy � median yð Þjð Þ ð17Þ

where y is a variable with CDF Pt, and division by 0.675 ensures that if the predictive distribu-

tion is normal this yields a value equivalent to the standard deviation. The MAD (i.e., the

MADN without the normalising factor) is related to the interquartile range (and in the limit of

infinite sample size takes twice its value), a common measure of sharpness [33], but is more

robust to outliers [51]. The sharpest model would focus all forecasts on one point and have

S = 0, whereas a completely blurred forecast would have S!1. Again, we used Monte-Carlo

samples from Pt to estimate sharpness.

We further assessed the bias of forecasts to test whether a model systematically over- or

underpredicted. We defined the forecast bias at time t as

BtðPt; xtÞ ¼ 1 � ðPtðxtÞ þ Ptðxt � 1ÞÞ ð18Þ

The least biased model would have exactly half of predictive probability mass not concentrated

on the data itself below the data at time t and Bt = 0, whereas a completely biased model would

yield either all predictive probability mass above (Bt = 1) or below (Bt = −1) the data.

We further evaluated forecasts using two proper scoring rules, that is scores which are mini-

mised if the predictive distribution is the same as the one generating the data. These scores

combine the assessment of calibration and sharpness for comparison of overall forecasting

skill. The Ranked Probability Score (RPS) [52, 53] for count data is defined as [50]

RPSðPt; xtÞ ¼
X1

k¼0

ðPtðkÞ � 1ðk � xtÞÞ
2
: ð19Þ

It reduces to the mean absolute error (MAE) if the forecast is deterministic and can therefore

be seen as its probabilistic generalisation for discrete forecasts. A convenient equivalent
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formulation for predictions generated from Monte-Carlo samples is [47, 50]

RPSðPt; xtÞ ¼ EPt
jX � xtj �

1

2
EPt
jX � X0j; ð20Þ

where X and X0 are independent realisations of a random variable with cumulative distribution

Pt.
The Dawid-Sebastiani score (DSS) only considers the first two moments of the predictive

distribution and is defined as [50]

DSSðPt; xtÞ ¼
xt � mPt

sPt

 !2

þ 2 logsPt
ð21Þ

where mPt
and sPt

are the mean and standard deviation of the predictive probability distribu-

tion, respectively, estimated here using Monte-Carlo samples.

For comparison, we also evaluated forecasts using the absolute error (AE) of the median

forecast, that is

AEðPt; xtÞ ¼ jmedianPt
ðXÞ � xtj ð22Þ

where X is a random variable with cumulative distribution Pt.
All scoring metrics used are implemented in the R package accompanying the paper. The

goftest package was used for the Anderson-Darling test [54] and the scoringRules package for

the RPS and DSS [55].

Results

The semi-mechanistic model used to generate real-time forecasts during the epidemic was able

to reproduce the trajectories up to the date of each forecast, following the data closely by

means of the smoothly varying transmission rate (Fig 1). The overall behaviour of the repro-

duction number (ignoring depletion of susceptibles which did not play a role at the population

level given the relatively small proportion of the population infected) was one of a near-mono-

tonic decline, from a median estimate of 2.9 (interquartile range (IQR) 2.1–4, 90% credible

interval (CI) 1.2–6.9) in the first fitted week (beginning 10 August, 2014) to a median estimate

of 1.3 (IQR 0.9–1.9, 90% CI 0.4–3.7) in early November, 0.9 (IQR 0.6–1.3, 90% CI 0.2–2.2) in

Fig 1. Final fit of the semi-mechanistic model to the Ebola outbreak in Western Area, Sierra Leone. (A) Final fit of

the reported weekly incidence (black line and grey shading) to the data (black dots). (B) Corresponding dynamics of

the reproduction number (ignoring depletion of susceptibles). Point-wise median state estimates are indicated by a

solid line, interquartile ranges by dark shading, and 90% intervals by light shading. The threshold reproduction

number (R0 = 1), determining whether case numbers are expected to increase or decrease, is indicated by a dashed line.

In both plots, a dotted vertical line indicates the date of the first forecast assessed in this manuscript (24 August 2014).

https://doi.org/10.1371/journal.pcbi.1006785.g001
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early December, 0.6 in early January (IQR 0.3–0.8, 90% CI 0.1–1.5) and 0.3 at the end of the

epidemic in early February (IQR 0.2–0.4, 90% CI 0.1–0.9).

The epidemic lasted for a total of 27 weeks, with forecasts generated starting from week 3.

For m-week ahead forecasts this yielded a sample size of 25 −m forecasts to assess calibration.

Calibration of forecasts from the semi-mechanistic model were good for a maximum of one or

two weeks, but deteriorated rapidly at longer forecasting horizons (Fig 2). The two semi-mech-

anistic forecast model variants with best calibration performance used deterministic dynamics

starting at the last fitted data point (Table 1). Of these two, the forecast model that kept the

Fig 2. Calibration of forecasts from the semi-mechanistic model. (A) Calibration of predictive model variants

(p-value of the Anderson-Darling test of uniformity) as a function of the forecast horizon. Shown in dark red is the

best calibrated forecasting model variant (corresponding to the second row of Table 1). Other model variants are

shown in light red. (B) Comparison of one-week forecasts of reported weekly incidence generated using the best semi-

mechanistic model variant to the subsequently released data. The data are shown as a thick line, and forecasts as dots

connected by a thin line. Dark shades of grey indicate the point-wise interquartile range, and lighter shades of grey the

point-wise 90% credible interval.

https://doi.org/10.1371/journal.pcbi.1006785.g002

Table 1. Calibration of forecast model variants of the semi-mechanistic model. Calibration (p-value of the Anderson-Darling test of uniformity) of deterministic and

stochastic predictive model variants starting either at the last data point or one week before, with varying (according to a Gaussian random walk) or fixed transmission rate

either starting from the last value of the transmission rate or from an average over the last 2 or 3 weeks, at different forecast horizons up to 4 weeks. The p-values

highlighted in bold reflect predictive models with no evidence of miscalibration. The second row corresponds to the highlighted model variant in Fig 2A.

Predictive model variant Forecast horizon (weeks)

Stochasticity Start Transmission Averaged 1 2 3 4

deterministic at last data point varying no 0.28 0.1 0.02 <0.01

deterministic at last data point fixed no 0.26 0.14 0.03 <0.01

deterministic at last data point fixed 2 weeks 0.24 0.03 <0.01 <0.01

deterministic at last data point fixed 3 weeks 0.21 <0.01 <0.01 <0.01

deterministic 1 week before varying no 0.05 0.02 <0.01 <0.01

deterministic 1 week before fixed no 0.09 0.02 <0.01 <0.01

deterministic 1 week before fixed 2 weeks 0.09 <0.01 <0.01 <0.01

deterministic 1 week before fixed 3 weeks 0.03 <0.01 <0.01 <0.01

stochastic at last data point varying no 0.02 0.02 <0.01 <0.01

stochastic at last data point fixed no 0.02 0.02 <0.01 <0.01

stochastic at last data point fixed 2 weeks 0.01 <0.01 <0.01 <0.01

stochastic at last data point fixed 3 weeks <0.01 <0.01 <0.01 <0.01

stochastic 1 week before varying no <0.01 <0.01 <0.01 <0.01

stochastic 1 week before fixed no <0.01 <0.01 <0.01 <0.01

stochastic 1 week before fixed 2 weeks <0.01 <0.01 <0.01 <0.01

stochastic 1 week before fixed 3 weeks <0.01 <0.01 <0.01 <0.01

https://doi.org/10.1371/journal.pcbi.1006785.t001
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transmission rate constant from the value at the last data point performed slightly better across

forecast horizons than one that continued to change the transmission rate following a random

walk with volatility estimated from the time series. There was no evidence of miscalibration in

both of the models with best calibration performance for two-week ahead forecasts, but

increasing evidence of miscalibration for forecast horizons of three weeks or more. Calibration

of all model variants was poor four weeks or more ahead, and all the stochastic model variants

were miscalibrated for any forecast horizon, including the one we used to publish forecasts

during the Ebola epidemic (stochastic, starting at the last data point, no averaging of the trans-

mission rate, no projected volatility).

The calibration of the best semi-mechanistic forecast model variant (deterministic dynam-

ics, transmission rate fixed and starting at the last data point) was better than that of any of the

null models (Fig 3A and Table 2) for up to three weeks. While there was no evidence for misca-

libration of the autoregressive null model for 1-week-ahead forecasts, there was good evidence

of miscalibration for longer forecast horizons. There was some evidence of miscalibration of

the unfocused null model, which assumes that the same number of cases will be reported in

the weeks following the week during which the forecast was made, for 1 week ahead and good

evidence of miscalibration beyond. Calibration of the deterministic null model was poor for all

forecast horizons.

The semi-mechanistic and deterministic models showed a tendency to overestimate the pre-

dicted number of cases, while the autoregressive and null models tended to underestimate (Fig

3B and and Table 2). This bias increased with longer forecast horizons in all cases. The best cali-

brated semi-mechanistic model variant progressed from a 12% bias at 1 week ahead to 20% (2

weeks), 30% (3 weeks), 40% (4 weeks) and 44% (5 weeks) overestimation. At the same time,

this model showed rapidly decreasing sharpness as the forecast horizon increased (Fig 3C and

and Table 2). This is reflected in the proper scoring rules that combine calibration and sharp-

ness, with smaller values indicating better forecasts (Fig 3D and 3E and and Table 2). At

1-week ahead, the mean RPS values of the autoregressive, unfocused and best semi-mechanistic

Fig 3. Forecasting metrics and scores of the best semi-mechanistic model variant compared to null models.

Metrics shown are (A) calibration (p-value of Anderson-Darling test, greater values indicating better calibration,

dashed lines at 0.1 and 0.01), (B) bias (less bias if closer to 0), (C) sharpness (MAD, sharper models having values closer

to 0), (D) RPS (better values closer to 0), (E) DSS (better values closer to 0) and (F) AE (better values closer to 0), all as

a function of the forecast horizon.

https://doi.org/10.1371/journal.pcbi.1006785.g003
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forecasting models were all around 30. At increasing forecasting horizon, the RPS of the semi-

mechanistic model grew faster than the RPS of the autoregressive and unfocused null models.

The DSS of the semi-mechanistic model, on the other hand, was very similar to the one of the

autoregressive and better than that of the other null models at a forecast horizon of 1 week,

with the autoregressive again performing best at increasing forecast horizons.

Focusing purely on the median forecast (and thus ignoring both calibration and sharpness),

the absolute error (AE, Fig 3F and Table 2) was lowest (42) for the best semi-mechanistic

model variant at 1-week ahead forecasts, although similar to the autoregressive and unfocused

null models. With increasing forecasting horizon, the absolute error increased at a faster rate

for the semi-mechanistic model than for the autoregressive and unfocused null models.

We lastly studied the calibration behaviour of the models over time; that is, using the data

and forecasts available up to different time points during the epidemic (Fig 4). This shows that

from very early on, not much changed in the ranking of the different semi-mechanistic model

variants. Comparing the best semi-mechanistic forecasting model to the null models, again,

for almost the whole duration of the epidemic calibration of the semi-mechanistic model was

best for forecasts 1 or 2 weeks ahead.

Discussion

Probabilistic forecasts aim to quantify the inherent uncertainty in predicting the future. In the

context of infectious disease outbreaks, they allow the forecaster to go beyond merely provid-

ing the most likely future scenario and quantify how likely that scenario is to occur compared

to other possible scenarios. While correctly quantifying uncertainty in predicted trajectories

has not commonly been the focus in infectious disease forecasting, it can have enormous prac-

tical implications for public health planning. Especially during acute outbreaks, decisions are

often made based on so-called “worst-case scenarios” and their likelihood of occurring. The

ability to adequately assess the magnitude as well as the probability of such scenarios requires

accuracy at the tails of the predictive distribution, in other words good calibration of the

forecasts.

Table 2. Forecasting metrics and scores of the best semi-mechanistic model variant compared to null models. The values shown are the same scores as in Fig 3, for

forecasting horizons up to three weeks. The p-values for calibration highlighted in bold reflect predictive models with no evidence of miscalibration.

Model Calibration Sharpness Bias RPS DSS AE

1 week ahead

Semi-mechanistic 0.26 91 0.13 31 9.2 42

Autoregressive 0.1 61 -0.17 31 9.1 43

Deterministic 0.03 340 0.24 97 11 130

Unfocused <0.01 41 -0.024 35 13 47

2 weeks ahead

Semi-mechanistic 0.14 150 0.2 50 12 65

Autoregressive 0.03 77 -0.18 43 9.9 60

Deterministic <0.01 400 0.35 120 12 160

Unfocused <0.01 42 -0.044 48 16 61

3 weeks ahead

Semi-mechanistic 0.03 230 0.3 81 15 93

Autoregressive 0.02 90 -0.17 53 11 73

Deterministic <0.01 490 0.45 160 13 210

Unfocused <0.01 44 -0.058 60 29 71

https://doi.org/10.1371/journal.pcbi.1006785.t002

Assessing the performance of real-time epidemic forecasts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006785 February 11, 2019 11 / 17

https://doi.org/10.1371/journal.pcbi.1006785.t002
https://doi.org/10.1371/journal.pcbi.1006785


More generally, probabilistic forecasts need to be assessed using metrics that go beyond the

simple difference between the central forecast and what really happened. Applying a suite of

assessment methods to the forecasts we produced for Western Area, Sierra Leone, we found

that probabilistic calibration of semi-mechanistic model variants varied, with the best ones

showing good calibration for up to 2-3 weeks ahead, but performance deteriorated rapidly as

the forecasting horizon increased. This reflects our lack of knowledge about the underlying

processes shaping the epidemic at the time, from public health interventions by numerous

national and international agencies to changes in individual and community behaviour. Dur-

ing the epidemic, we only published forecasts up to 3 weeks ahead, as longer forecasting hori-

zons were not considered appropriate.

Our forecasts suffered from bias that worsened as the forecasting horizon expanded. Gener-

ally, the forecasts tended to overestimate the number of cases to be expected in the following

weeks, as did most other forecasts generated during the outbreak [29]. This is in line with pre-

vious findings where our model was applied to predict simulated data of a hypothetical Ebola

outbreak [38]. Log-transforming the transmission rate in order to ensure positivity skewed the

underlying distribution and made very high values possible. Moreover, we did not model a

trend in the transmission rate, whereas in reality transmission decreased over the course of the

epidemic, probably due to a combination of factors ranging from better provision of isolation

beds to increasing awareness of the outbreak and subsequent behavioural changes. While our

model captured changes in the transmission rate in model fits, it did not forecast any trends

such as the observed decrease over time. Capturing such trends in the attempt to identify

underlying causes would be an important future improvement of real-time infectious disease

models used for forecasting.

There are trade-offs between achieving good outcomes for the different forecast metrics we

used. Deciding whether the best forecast is the best calibrated, the sharpest or the least biased,

or some compromise between the three, is not a straightforward task. Our assessment of fore-

casts using separate metrics for probabilistic calibration, sharpness and bias highlights the

underlying trade-offs. While the best calibrated semi-mechanistic model variant showed better

calibration performance than the null models, this came at the expense of a decrease in the

Fig 4. Calibration over time. Calibration scores of the forecast up to the time point shown on the x-axis. (A) Semi-

mechanistic model variants, with the best model highlighted in dark red and other model variants are shown in light

red. (B) Best semi-mechanistic model and null models. In both cases, 1-week (left) and 2-week (right) calibration (p-

value of Anderson-Darling test) are shown.

https://doi.org/10.1371/journal.pcbi.1006785.g004
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sharpness of forecasts. Comparing the models using the RPS alone, the semi-mechanistic

model of best calibration performance would not necessarily have been chosen. Following the

paradigm of maximising sharpness subject to calibration, we therefore recommend to treat

probabilistic calibration as a prerequisite to the use of forecasts, in line with what has recently

been suggested for post-processing of forecasts [56]. Probabilistic calibration is essential for

making meaningful probabilistic statements (such as the chances of seeing the number of cases

exceed a set threshold in the upcoming weeks) that enable realistic assessments of resource

demand, the possible future course of the epidemic including worst-case scenarios, as well as

the potential impact of public health measures. Beyond the formal test for uniformity of the

PIT applied here, alternative ways of assessing calibration can be used [47, 57]. Once a subset

of models has been selected in an attempt to discard miscalibrated models, other criteria such

as the RPS or DSS can be used to select the best model for forecasts, or to generate weights for

ensemble forecasts combining several models. Such ensemble forecasts have become a stan-

dard in weather forecasting [58] and have more recently shown promise for infectious disease

forecasts [12, 59, 60].

Other models may have performed better than the ones presented here. Because we did not

have access to data that would have allowed us to assess the importance of different transmis-

sion routes (burials, hospitals and the community) we relied on a relatively simple, flexible

model. The deterministic SEIR model we used as a null model performed poorly on all fore-

casting scores, and failed to capture the downturn of the epidemic in Western Area. On the

other hand, a well-calibrated mechanistic model that accounts for all relevant dynamic factors

and external influences could, in principle, have been used to predict the behaviour of the epi-

demic reliably and precisely. Yet, lack of detailed data on transmission routes and risk factors

precluded the parameterisation of such a model and are likely to do so again in future epidem-

ics in resource-poor settings. Future work in this area will need to determine the main sources

of forecasting error, whether structural, observational or parametric, as well as strategies to

reduce such errors [32].

In practice, there might be considerations beyond performance when choosing a model for

forecasting. Our model combined a mechanistic core (the SEIR model) with non-mechanistic

variable elements. By using a flexible non-parametric form of the time-varying transmission

rate, the model provided a good fit to the case series despite a high levels of uncertainty about

the underlying process. Having a model with a mechanistic core came with the advantage of

enabling the assessment of interventions just as with a traditional mechanistic model. For

example, the impact of a vaccine could be modelled by moving individuals from the suscepti-

ble into the recovered compartment [36, 37]. At the same time, the model was flexible enough

to visually fit a wide variety of time series, and this flexibility might mask underlying misspeci-

fications. Whenever possible, the guiding principle in assessing real-time models and predic-

tions for public health should be the quality of the recommended decisions based on the

model results [61].

Epidemic forecasts played a prominent role in the response to and public awareness of the

Ebola epidemic [28]. Forecasts have been used for vaccine trial planning against Zika virus

[62] and will be called upon again to inform the response to the next emerging epidemic or

pandemic threat. Recent advances in computational and statistical methods now make it possi-

ble to fit models in near-real time, as demonstrated by our weekly forecasts [35]. Such repeated

forecasts are a prerequisite for the use of metrics that assess not only how close the predictions

were to reality, but also how well uncertainty in the predictions has been quantified. An agree-

ment on standards of forecast assessment is urgently needed in infectious disease epidemiol-

ogy, and retrospective or even real-time assessment should become standard for epidemic

forecasts to prove accuracy and improve end-user trust. The metrics we have used here or
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variations thereof could become measures of forecasting performance that are routinely used

to evaluate and improve forecasts during epidemics.

For forecast assessment to happen in practice, evaluation strategies must be planned before

the forecasts are generated. In order for such evaluation to be performed retrospectively, all

forecasts as well as the data, code and models they were based on should be made public at the

time, or at least preserved and decisions recorded for later analysis. We published weekly

updated aggregate graphs and numbers during the Ebola epidemic, yet for full transparency it

would have been preferable to allow individuals to download raw forecast data for further

analysis.

If forecasts are not only produced but also evaluated in real time, this can give valuable

insights into strengths, limitations, and reasonable time horizons. In our case, by tracking the

performance of our forecasts, we would have noticed the poor calibration of the model variant

chosen for the forecasts presented to the public, and instead selected better calibrated variants.

At the same time, we did not store the predictive distribution samples for any area apart from

Western Area in order to better use available storage space, and because we did not deem such

storage valuable at the time. This has precluded a broader investigation of the performance of

our forecasts.

Research into modelling and forecasting methodology and predictive performance at times

during which there is no public health emergency should be part of pandemic preparedness

activities. To facilitate this, outbreak data must be made available openly and rapidly. Where

available, combination of multiple sources, such as epidemiological and genetic data, could

increase predictive power. It is only on the basis of systematic and careful assessment of fore-

cast performance during and after the event that predictive ability of computational models

can be improved and lessons be learned to maximise their utility in future epidemics.
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