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In the current climate of burgeoning health care costs, pharmacoeconomics is becoming increasingly important, but knowledge about
pharmacoeconomic methods is limited among most clinicians. This review provides an introduction to, and overview of, common
methods used in pharmacoeconomic modelling: decision analysis, Markov modelling, discounting and uncertainty analyses via Monte
Carlo simulation. It will conclude with a suggested approach to reading and appraising published pharmacoeconomic analyses.

Introduction

Properly designed clinical trials (or meta-analyses of such
trials) provide the highest level of evidence regarding the
efficacy of drugs,but they seldom afford insight into poten-
tial effectiveness and cost-effectiveness [1, 2]. Efficacy refers
to the question of whether or not a drug provides benefit
in a research setting (‘Can it work?’), while effectiveness
and cost-effectiveness refer to questions of whether or not
a drug provides benefit in the real world setting (‘Does it
work?’ and ‘Is it worth it?’) [3, 4].

There is often a large gap between efficacy and
effectiveness/cost-effectiveness because clinical trials are
by necessity undertaken on highly circumscribed popula-
tions in tightly-controlled study environments, are often
short in duration (up to 5 or so years) and do not consider
competing mortality and morbidity from conditions not of
interest. Furthermore, it is uncommon for clinical trials to
consider costs, despite the fact that cost-effectiveness is a
crucial determinant of the feasibility of pharmacotherapy.

Issues regarding the costs of health care may have
more direct relevance to health policy makers and finan-
ciers of health care than clinicians, but in the current
climate of burgeoning health care costs, the onus should
be on all health professionals to ensure responsible health
expenditure. Hence it is important for clinicians to be able
to read and appraise the pharmacoeconomic literature.
This review will provide an introduction to, and overview

of, common methods used in pharmacoeconomic model-
ling: decision analysis, Markov modelling, discounting and
uncertainty analyses via Monte Carlo simulation. It will
conclude with a suggested approach to reading and
appraising published pharmacoeconomic analyses.

Decision analysis

Decision analysis [5–7] is used to quantify and compare
explicitly various health strategies, including drug therapy,
in terms of their likely health effects and/or costs, thus
informing clinical practice as well as health policy. It is
useful especially in situations where there is uncertainty
about the balance of potential benefits and risks,and costs,
associated with various health strategies.

Decision analysis is usually conceptualized as a decision
analysis tree, which outlines and quantifies the conse-
quences of the two or more options of a decision to be
made. Figure 1 provides a simple, hypothetical example of
a decision about whether or not to start drug therapy.
Therapy is associated with both potential benefit
(decrease in the risk of ‘disease A’) and harm (increase in
the risk of ‘disease B’).

The square is the decision node, the point where alter-
native treatment options are defined. In this example, two
choices are defined: ‘No drug therapy’ and ‘Drug therapy’.
The circles represent chance nodes, from which emanate

British Journal of Clinical
Pharmacology

DOI:10.1111/j.1365-2125.2012.04421.x

944 / Br J Clin Pharmacol / 75:4 / 944–950 © 2012 The Authors
British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society



the possible consequences of each choice.These are called
transition states. Both options in the example have the
same four possible transition states: ‘Remain in good
health’, ‘Develop ‘disease A’ (but stay alive)’, ‘Develop
‘disease B’ (but stay alive)’ and ‘Die’ (from any cause). The
underlying likelihoods of their occurring are indicated
below the relevant sub-branches, and are called transition
probabilities.The sum of all transition probabilities emanat-
ing from a chance node is always one. In the example,
compared with no drug therapy, drug therapy reduces the
likelihood of developing non-fatal ‘disease A’ by 20% (from
20% to 16%) and of dying by 10% (from 10% to 9%), but
increases the likelihood of developing non-fatal ‘disease B’
by 10% (from 20% to 22%). The triangles are terminal
nodes, where the health impact of each consequence,
called a payoff, is quantified.

In the example (Figure 1), as is often the case in phar-
macoeconomic analyses, payoffs are expressed as utilities.
Utilities provide a measure of health value and applies
penalties to time spent in less-than-perfect health [8]. Utili-
ties are useful because they provide a summary measure
of health, and allow for comparison of disparate condi-
tions. In the example, ‘disease A’ is ascribed a utility of 0.8.
This means that‘disease A’is considered to be equivalent to

80% of full health. By the same token,‘disease B’ is assigned
a utility of 0.6,and hence equivalent to 60% of good health.
Death has been ascribed a utility of zero, as is common
practice.

To analyze (evaluate) a decision analysis tree, the
expected value of each branch is calculated by multiplying
the payoff associated with each transition by the probabil-
ity of it occurring, and summing these.That is, the expected
value of each main branch (‘No drug therapy’ and ‘Drug
therapy’) is: S (payoffn ¥ transition probabilityn).

In effect, the expected value is a weighted-average
payoff associated with the option. In the example, the
expected value of ‘No drug therapy’ is 0.78 utility
(S[utilityn ¥ transition probabilityn] = 0.50 ¥ 1.0 + 0.20 ¥
0.80 + 0.20 ¥ 0.60 + 0.10 ¥ 0) and the expected value
of ‘Drug therapy’is 0.79 utility (0.53 ¥ 1.0 + 0.16 ¥ 0.80 +
0.22 ¥ 0.60 + 0.09 ¥ 0). Therefore on average, drug therapy
would provide a (slightly) more favorable health return
compared with no drug therapy. Even though it increases
the risk of the more severe ‘disease B’, this is insufficient to
offset its beneficial effects on the risk of non-fatal ‘disease
A’ and death.

The consequences of an option can also be quantified
in terms of costs. In Figure 2, the costs of diseases ‘A’ and ‘B’
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Figure 1
Simple hypothetical example of a decision analysis tree, capturing utilities as outcomes
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are indicated in place of utilities from Figure 1. Costs for
‘disease B’ are higher because this condition is more disa-
bling.The expected values of each branch are calculated in
the same way. That is: S (costn ¥ transition probabilityn).

Analysis of the tree reveals the expected dollar values
of ‘No drug therapy’ and ‘Drug therapy’ to be $120
(0.50 ¥ $0 + 0.20 ¥ $100 + 0.20 ¥ $500 + 0.10 ¥ $0) and
$126 (0.53 ¥ $0 + 0.16 ¥ $100 + 0.22 ¥ $500 + 0.09 ¥ $0),
respectively. On average, drug therapy would lead to
greater downstream cost, even though it is associated with
improved health outcomes.

So far, the expected dollar value of the drug therapy has
not considered the cost of the drug itself. If this is assumed
to be a once-off cost of $300, then the net cost of drug
therapy would be: $300 + ($126–$120) = $306. The net
costs of health interventions always take into account
downstream related costs.

In the example, on average, if drug therapy was to be
delivered, it would increase utility by 0.01 (from 0.78 to
0.79), but cost $306 dollars more.

The net cost per unit of benefit gained from interven-
tion is the incremental cost-effectiveness ratio (ICER), which
is the main outcome of interest in cost-effectiveness,
including pharmacoeconomic, analyses. In the example,
the ICER would be $306/0.01 utility gained = $30 600 per
utility gained.

Utilities are multiplied by the years to which they apply
to derive quality-adjusted life years (QALYs) [9–12]. In the
example above, if it is assumed that the utilities stayed
constant for 1 year (that is, the health benefit procured by
drug therapy lasted for a whole year), then drug therapy
would lead to 0.01 QALY gained (0.01 utility multiplied by
1 year), and the ICER would be $30 600 per QALY gained
over 1 year.

Basic decision analysis considers only one sequence of
events within one time-frame. This is a limitation if the
conditions being simulated have different sequential
stages, and/or data inputs (such as transition probabilities
or costs) evolve with time. To overcome this inherent limi-
tation of basic decision analysis, Markov modelling [10, 13]
is often employed.

Markov modelling

Figure 3 illustrates an extension of the situation depicted
in Figures 1 and 2, in which multiple sequential events over
multiple time periods can be considered.

After a person develops ‘disease A’, that person may
later develop ‘disease B’, and vice versa. Recovery from
either disease is not assumed to be possible (and hence
there is no transition back to ‘healthy’). Any person is also
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Figure 2
Simple hypothetical example of a decision analysis tree, capturing costs as outcomes
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susceptible to death at any time. To capture all possible
events, multiple health states need to be modelled, each
with its own set of possible transitions. The exception is
death, from which no transitions can be made. Death is
considered an absorbing state.

Analysis of Markov decision analysis trees does not
involve just a single transition of subjects from left to right
across the branches,but. rather involves repeated recycling
between the terminal nodes (except in the case of absorb-
ing states) and the purple encircled ‘M’s, which are called

Markov nodes. Markov nodes represent the points to which
individuals return at the end of each cycle, and are chan-
nelled to one of the health states to begin the next cycle,
either one previously occupied or another, depending on
the transition they just made.

The above process describes Markov modelling [10,
13], which was named after the Russian mathematician
Andrei Markov (1856–1922). A Markov chain describes a
sequence of events in which the likelihood of an event
occurring is dependent on the preceding event. A Markov
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Figure 3
Hypothetical example of a Markov decision tree. For simplicity, only the branches of the ‘No drug therapy’ arm are illustrated. These are the same for the
‘Drug therapy’ arm
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chain has no length limit, but will end in an event that is
absorbing. A Markov model often comprises more than
one Markov chain. Figure 4 illustrates in a state-transition
format the Markov model that is depicted as a decision
analysis tree in Figure 3.

The key features of a Markov model are:

(i) that individuals reside in one of a finite set of mutually
exclusive health states.

(ii) that time is represented by discrete periods called
cycles, and individuals move between health states, or
remain in their current health states, at the end of each
cycle.

(iii) that movements are governed by transition probabili-
ties that are specific to each health state and each
cycle.

Evaluation of a decision analysis tree which incorporates
Markov modelling is straight forward: expected values are
calculated at the end of each cycle and totalled at the end
of the simulation.

The main advantage of incorporating Markov model-
ling into a decision analysis is that is allows for the simula-
tion of more complex consequences of an option, as is
illustrated above. Not only can a greater number of possi-
ble events be simulated, they can be simulated for
lengthier periods downstream.

The main limitation of Markov models is that with any
cycle, the possible transitions which individuals can make
depend only on the state they are in, and not on how they
arrived at that state. That is, Markov modelling lacks
memory. This characteristic is often known as the Markov
assumption. This problem with the Markov assumption is
especially highlighted in two settings. First, when more
than one disease is being considered, because many dis-
eases are inter-dependent and the probability of one is
often affected by the prior occurrence of another. Sec-
ondly, when model inputs (such as transition probabilities,

utilities and costs) evolve over time. For example, as the
age of model subjects increases with repeated cycles, their
risks of diseases will increase.

The first problem is overcome by including as many
health states as is required to capture important disease
combinations, as is exemplified by Figures 3 and 4.
However, inclusion of too many health states into a Markov
model can render it unwieldy. Paradoxically, a complex
Markov model that attempts to reflect more accurately
multiple related conditions may be subject to more uncer-
tainty because of the need for more data inputs and
assumptions to be made about them. For example, In Fig-
ures 3 and 4, transition probabilities need to be estimated
for diseases A and B that are conditional on the presence or
otherwise of the other disease.

The second problem of evolving data inputs is over-
come by including cycle specific inputs. For some inputs,
cycle specificity is easily estimated, such as age-related
changes to risks of disease, but for others it poses a chal-
lenge due to a lack of data, such as age specificity of
disease costs and utilities.

Discounting

In pharmacoeconomic modelling, all measures of health
and costs are referenced to the baseline time, and future
measures of life/health and costs are discounted [14] by
convention. Discounting is undertaken because life/health
and money in the future is valued less than at the present
time (even after accounting for inflation). This reflects
human nature’s preference for immediate gratification,
and if not immediately, then as soon as possible.

Discount rates vary, but are generally between 3% and
5% annually [14, 15].

In pharmacoeconomic modelling, a common formula
used for discounting is:

Healthy Death

‘Disease A’

‘Disease B’

‘Disease A’ and ‘Disease B’

Figure 4
Markov model in Figure 3 depicted in state-transition format
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N disc N undisc d( ) = ( ) × +( )([ ]1 1 t

where N(disc) is the discounted measure of life/health or
cost, N(undisc) is the undiscounted (actual) measure, d is
the discount rate and t is the time elapsed since the refer-
ence (baseline) time.

Uncertainty analyses

Because pharmacoeconomic modelling is based on con-
jecture, it is important that uncertainty be expressed in the
modelling outputs. Indeed, the expression of uncertainty is
a fundamental part of any clinical and applied research, as
epitomized by the 95% confidence interval that surrounds
most estimates. Models are vulnerable to uncertainty
because they rely on multiple data inputs, and as the
number of inputs and modelling steps increase, so too will
uncertainty in outputs. In addition, assumptions have to be
made in many instances, which serve to increase uncer-
tainty even further.

Monte Carlo simulation [16] refers to a method of
undertaking multiple simulations of a model, each
time taking samples from specified uncertainty ranges of
the model’s inputs (as opposed to point estimates). These
uncertainty ranges are most often expressed as probabil-
ity distributions. Probability distributions describe the
range of possible values for a parameter as well as
the probability of each value occurring. Common types
of probability distributions include ‘gamma’, ‘uniform’,
‘normal’ and ‘triangular’ (Figure 5). Probability distribu-
tions that relate to data inputs for a model are often called
input distributions.

As Monte Carlo simulation involves multiple simula-
tions, it therefore generates multiple outputs, from which
probability distributions can also be derived. These are
often called output distributions. With only a small number
of iterations in a Monte Carlo simulation, the output distri-
bution is not well defined. However, as more iterations are
run, the output distribution becomes more definable and
is said to become stable. This phenomenon is known as
convergence [17]. A sufficient number of iterations must be
undertaken in Monte Carlo simulation such that conver-
gence of an output distribution occurs.

Monte Carlo simulation modelling is also known as sto-
chastic modelling. This defines a type of modelling in
which there is a range of possible outputs that is depend-
ent on the probabilistic nature of inputs. In contrast,
models whose outputs are fixed because their inputs do
not vary are known as deterministic models.

Commonly used software packages
for pharmacoeconomic analyses

TreeAge (TreeAge Software Inc,Williamstown, MA, USA) is a
commonly-used software package designed specifically
for decision analyses. It is a powerful program that also
allows for construction of complex Markov models and
incorporates uncertainty analyses via Monte Carlo simula-
tion.

Microsoft Excel (Microsoft Corporation, Redmond, WA,
USA) is also widely used to undertake pharmacoeconomic
analyses. Being entirely flexible, it can be programmed to
simulate decision analysis and Markov modelling. Monte
Carlo simulation is not possible in Excel itself, but this
feature can be added with installation of the macro @RISK
(Palisade Corporation, Ithaca, NY, USA).

Suggested approach to reading and
appraising published
pharmacoeconomic analyses

The parameters of a pharmacoeconomic analysis should
be considered in the same way as the parameters of a
clinical trial: population, intervention, comparator,
outcome and timing (PICOT).

The population comprises the modelled population,
sources of input data and assumptions for which must be
clearly articulated so that its generalizability and applica-
bility can be ascertained.

The intervention is the drug of interest, and all assump-
tions made about its use (such as dose over time and
adherence) should be clearly described. The comparator
should also clearly be described, as it is the reference
against which health and economic outcomes associated
with the drug of interest are compared.

Outcomes are usually net costs, net health benefits
expressed as life years gained or QALYs gained and ICERs
(the ratio of net costs to net health benefits). Costs will
depend on the perspective adopted for the pharmacoeco-
nomic evaluation, which should be clearly defined.The two
common perspectives are the health system perspective,
which captures only costs met by healthcare financiers,
and the societal perspective, which captures all costs,
including those outside of the healthcare system (such as
occurs with loss of productivity). Life years and QALYs
gained are extrapolated from the reduction in the risk of
the target disease and/or death, and all assumptions made

Gamma Uniform Normal Triangular

Figure 5
Common types of probability distributions used in uncertainty analyses
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about the translation of treatment benefit to health gain
need to be carefully considered.

The time frame considered in a pharmacoeconomic
model is called the time horizon. Expression of the time
horizon in any economic evaluation is important because
ICERs vary with time. They generally decrease (that is, the
intervention becomes more cost-effective) as the time
horizon increases.Another key consideration related to the
time horizon is the assumption made regarding the ben-
efits of the drug compared with the comparator over time.
This is especially important in instances where the mod-
elled time horizon exceeds the time frame of the clinical
trial(s) from which efficacy measures are derived.
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