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Abstract

Objective: The evaluation of HIV treatment programs is generally based on an estimation of survival among patients
receiving antiretroviral treatment (ART). In large HIV programs, loss to follow-up (LFU) rates remain high despite active
patient tracing, which is likely to bias survival estimates and survival regression analyses.

Methods: We compared uncorrected survival estimates derived from routine program data with estimates obtained by
applying six correction methods that use updated outcome data by a field survey targeting LFU patients in a rural HIV
program in Malawi. These methods were based on double-sampling and differed according to the weights given to survival
estimates in LFU and non-LFU subpopulations. We then proposed a correction of the survival regression analysis.

Results: Among 6,727 HIV-infected adults receiving ART, 9% were LFU after one year. The uncorrected survival estimates
from routine data were 91% in women and 84% in men. According to increasing sophistication of the correction methods,
the corrected survival estimates ranged from 89% to 85% in women and 82% to 77% in men. The estimates derived from
uncorrected regression analyses were highly biased for initial tuberculosis mortality ratios (RR; 95% Cl: 1.07; 0.76-1.50 vs.
2.06 to 2.28 with different correction weights), Kaposi sarcoma diagnosis (2.11; 1.61-2.76 vs. 2.64 to 3.9), and year of ART
initiation (1.40; 1.17-1.66 vs. 1.29 to 1.34).

Conclusions: In HIV programs with high LFU rates, the use of correction methods based on non-exhaustive double-
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sampling data are necessary to minimise the bias in survival estimates and survival regressions.
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Introduction

In the last five years, antiretroviral treatment (ART) programs
have scaled-up in Sub-Saharan Africa to provide ART to millions
of people. One of the main indicators used to evaluate the
effectiveness of these programs is survival after ART initiation;
however, this indicator is often biased because of underreporting
and unrecorded deaths [1].

Several approaches have been proposed to minimise the
attrition of study cohorts and ascertain the vital status of lost to
follow-up (LFU) patients [2-5]. However, high rates of loss to
follow-up represent a persistent challenge in program evaluation
[6] and, there is yet no validated and commonly accepted method
to analyse program data taking into account loss to follow-up data
in the absence of vital registration systems.

Generally, program evaluations use estimates of the probability
of remaining in care considering deaths and losses to follow-up as
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program failures [7]. These estimates may be difficult to interpret.
Indeed, the death rate is frequently higher among LFU than
among non-LFU patients for several reasons [8-10]: 1) death can
be the cause of the loss to follow-up; ii) patients prone to loss to
follow-up might be frailer than the others and have higher risks of
death; and, iii) after a few weeks or months without treatment,
LFU patients become frailer than the others.

The traditional (uncorrected) approach considers that loss to
follow-up is equivalent to administrative censoring at loss to
follow-up date. Whenever human and financial resources are
available, a double-sampling approach is used to ascertain the
outcome of all or a subset of LFU patients and to correct the death
rates either by updating the routine information or by applying a
weighted average of the death rates observed among LFU and
non-LFU patients [11]. In the absence of resources, external data
from meta-analyses may be used to estimate the death rate among
LFU patients [12]. More recent and sophisticated correction

February 2012 | Volume 7 | Issue 2 | 31706



methods based on double-sampling have been shown optimal and
provided unbiased estimations under some assumptions [13,14].
Whenever no correction or a non-optimal correction is made, the
magnitude of the bias may be significant.

Within the context of cohort attrition, some methods for
regression analysis [15] are able to provide unbiased results when
the probability of loss to follow-up does not change over the
follow-up duration. An alternative method used herein provides
also unbiased results even when the probability of loss to follow-up
changes over time after follow-up onset.

In the present study, we use six different methods to correct data
from a large HIV program in rural Malawi and compare the
corresponding estimates of one-year survival to quantify bias
reduction. We also propose a method to correct survival regression
analyses.

Methods

The HIV program in Chiradzulu and data sources

Since 2001, Médecins Sans Frontiéres (MSF) and the Malawian
Ministry of Health and Population have provided free ART to
HIV-infected persons in Chiradzulu district, Malawi. Individual
basic socio-demographic, clinico-immunological, and treatment
data were collected at each clinical visit.

Later, a survey was conducted, as part of an internal audit of
programme activities, to trace LFU patients and determine their
outcomes and reasons for care discontinuation. All patients with
an available address in Chiradzulu district and followed-up in one
of MSF-supported health facilities were traced. Eleven district-
wide catchment areas were defined according to the access to the
facilities where care was provided. One survey worker from the
community was hired within each catchment area and paid during
the whole survey period. The survey workers had to cover the
catchment areas by teams of two (on bicycles with car support
when necessary) and each worker, in turn, was the team leader in
his catchment area. All the workers were supervised by a long-
term MSF worker. LFU patients were traced at least three times
before the end of the ten-day search allotted for each catchment
area. Various findings from this survey have been reported
elsewhere [5].

In the present study, we analysed routine monitoring data on
6,727 ART-naive patients initiated on ART in the Chiradzulu
program between July 2004 and July 2007 and aged 15 years or
more at ART initiation. To facilitate comparisons of our results
with previous literature, we limited the analysis to the first year
after ART initiation. Thus, patient follow-up started at ART
initiation and was censored at the earliest of the following dates:
house moving, last clinical visit, or end of a one-year follow-up. A
patient was considered LFU if he (she) missed a scheduled
appointment by more than one month. The same censoring, one
year after ART initiation, was used for traced patients.

During the study period, 610 (9.1%) patients died, 583 (8.7%)
were LIU, and 413 (6.1%) were transferred out of the program.
Among LFU patients, 305 (52%) could be traced and the vital
status was ascertained for 202 (66%) (Figure 1).

Statistical analyses

The characteristics of LFU and non-LFU patients were first
described and compared using proportions and chi-square tests for
categorical variables and medians, interquartile ranges (IQRs),
and Kruskal-Wallis tests for continuous variables.

Patient survival estimates obtained using six different data
correction methods were compared to the estimates obtained
from uncorrected monitoring-program data. The six correction
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LFU between July 04-July 07
n=583

No recorded
residence
n=216

Living outside
Chiradzulu distric
n=62

Traced n=305

Outcome of tracing
Alive n=56

Dead n=114
Moved n=32

Not found n=103

Figure 1. Flow chart of the study cohort.
doi:10.1371/journal.pone.0031706.g001

methods were: 1) the updated-dataset approach, 2) the stratified
Kaplan-Meier approach, 3) the nomogram approach, 4) the time-
dependent stratified Kaplan-Meier approach, 5) the time- and
frailty-dependent stratified Kaplan-Meier approach, and, 6) a
regression method corrected for missing information on death
(Table 1). Survivals were estimated separately for men and
women. Table 2 provides a list of assumptions necessary to obtain
unbiased estimates.

For the updated-dataset approach, the data on outcome were
updated using the data collected during the survey ignoring that a
subset of LFU patients cannot be traced or found. Moreover, a
sensitivity analysis was carried to investigate the way in which the
results would be modified if all LFU patients were assumed to die
immediately after the last visit.

For the stratified Kaplan-Meier approach, mortality was first
calculated separately for non-LFU patients and LFU patients who
were traced and had their vital status ascertained. The two
mortalities were then combined applying weights that correspond
to the proportions LFU and non-LFU patients recorded at one
year after ART initiation.

With the nomogram approach, graphical estimates of the death
rates were obtained taking into account mortality in LFU and non-
LFU patients up to time ¢ [12] and the proportion of LFU patients
at end of follow-up.

The time-dependent stratified Kaplan-Meier approach was
used to account for changes in the probability of loss of follow-up
over time [13]. The estimated death rate at each time point was
calculated using the updated weighted averages of the death rates
among non-LFU patients and among LFU patients who were
traced and had their vital status ascertained. The weights were,
respectively, the proportions of non-LFU and LFU patients at
each time point & This method ignores a crucial heterogeneity
between the patients at time # actually, LFU patients could be
frailer than regularly followed-up ones.
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Table 1. Methods to correct survival estimates.

Method

Presentation

1

Updated dataset

+wtl
+wt2

+wt3

The information obtained on the subset of LFU patients who were traced and whose vital status was ascertained was used to
update the dataset.

First, the death rates were calculated separately for non-LFU and for LFU patients who were traced and whose vital status was
ascertained. These death rates were then combined to yield a weighted average. The weights used were the proportions of LFU

The death rates were first separately calculated for non-LFU and for LFU patients who were traced and whose vital status was
ascertained at each event-time. These death rates were then combined to yield a weighted average. The weights used were the

Step 1: A Cox proportional hazards model was used to identify factors predictive of LFU. The linear predictor of this model was
calculated. Quintiles of this linear predictor were used to create strata of subject having the same propensity to be lost-to-follow-
up. Step 2: Within each stratum, the death rates of non-LFU and traced LFU patients were computed. A global death rate was

2 Stratified Kaplan-Meier
and non-LFU patients at the end of the study.
3 Nomogram See reference 12
4 Time-dependant stratified
Kaplan-Meier
proportions of LFU and non-LFU patients at each event-time.
5  Time- and frailty-dependent
stratified Kaplan-Meier
finally obtained combining all strata estimators.
6  Regression analysis

Step 1: A weighted logistic regression was applied to a dataset limited to dead patients using both the first-phase and the
second-phase sample. This logistic regression predicted the probability of a death to be reported as a function of the covariates.
This predicted probability was considered as a sensitivity. Step 2: The follow-up of each patient was split into successive time
periods of one month each. Step 3: A Poisson regression model was used to estimate the death rate within each month period,
the logarithm of the sensitivity being included in a standard Poisson regression model as an offset. Thus, the number of observed
deaths was supposed to follow a Poisson distribution having as mean the product: number of patients at risk xrate of

death xsensitivity. NB. The weight used in step 1 was 1 for patients whose death was identified in the first sample. The weight
given to patients in the second-phase sample was used to take into account that only a subset of LFU patients were traced and
had their vital status ascertained

Weight =1; i.e., ignores that only a subset of LFU patients were traced and had their vital status ascertained.
Weight =the inverse of the proportion of patients traced and who had their vital status ascertained (see method 2)

Weight =the inverse of the proportion of patients traced and who had their vital status ascertained, at each time band (see
method 4)

doi:10.1371/journal.pone.0031706.t001

The time- and frailty-dependent stratified Kaplan-Meier
approach was proposed by An et al. [14] to account for that
frailty. It was applied using weighted averages within strata of
subjects having the same propensity to be lost-to-follow-up.

Regression methods were finally used to compensate for the lack
of information on death. In a first step, a logistic regression was
applied to a dataset that included only deceased patients. In this
logistic regression, the dependent variable was coded 1 when death
was ascertained from the routine program data and 0 when death

was ascertained after tracing LFU patients. This logistic regression
provided an estimate of the probability for a death to be recorded
in routine program data for each subgroup of patients. This
probability may be considered as the sensitivity of the routine
program to detect death; i.e., this sensitivity corresponds to the
likelihood of a death to be recorded in routine program data. In
the model, we included sex, age (as a continuous variable),
tuberculosis and Kaposi sarcoma diagnosis, CD4 cell count at
ART initiation (= or >150 cells/mm?), the year of therapy start

Table 2. Conditions to be fulfilled to obtain unbiased estimates.

Condition

Patients traced and who had
their vital status ascertained are

The death rate
among LFU equals

No change in the
probability of being

The probability of LFU
does not depend on the

Method representative of LFU patients that of non-LFU LFU over time covariates
1 Updated dataset 4 4 4 v
2 Stratified Kaplan-Meier v v v
3 Nomogram v v 4
4 Time-dependent stratified 4 v
Kaplan-Meier
5 Time and frailty dependent v
stratified Kaplan-Meier
6 Regression analysis
+wt1 v v v v
+wt2 v v v
+wt3 v 4

doi:10.1371/journal.pone.0031706.t002
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(20042005 or 2006-2007), and the delay between ART initiation
and death. Note that the national ART program was implemented
in 2004 in centralized hospitals throughout Malawi (approximately
55 sites). By the end of 2007, 109 sites were providing care. The
Chiradzulu program scaled up the decentralization of HIV
services in 2006. This was the reason for the choice of 2006 as a
threshold.

Three weighting options were applied to the logistic regression
to take into account that only a subgroup of LFU patients were
traced: 1) weight set to one (wtl), ignoring that only a subset of
LFU patients were traced and had their vital status ascertained; 2)
weight set to the inverse of the proportion of the above-mentioned
subset among LFU patients (wt2); and 3) weight set to the inverse
of the time-specific proportion of the above-mentioned subset
among LFU patients (wt3), allowing for changes in this proportion
over time. Poisson regression models were then fitted after splitting
individual patient follow-ups into successive one-month time
periods. Observed deaths in routine program data were assumed
to follow a Poisson distribution whose mean was equal to the
product of three factors: number of patients at riskxrate of
death xsensitivity. The results are presented as adjusted mortality
ratios (RR) with 95% confidence intervals (CI).

All the analyses were conducted using Stata 10 (StataCorp LP,
College Station, TX, USA), except the time- and frailty-dependent
stratified Kaplan-Meier approach for which a specific program,
developed in R software, was provided by the author of the
original publication [14].

Ethics

The protocols of the Chiradzulu project were approved within
the framework of formal agreements between MSF and the
Malawian Ministry of Health. The present observational study was
conducted under the supervision of the Malawi National Health
Science Research Committee with an agreement on collection and
use of routine programmatic data for monitoring and evaluation.
The study type did not require a formal submission for ethical
approval.

Survival Regression & Corrected Survival Estimates

Results

Patient characteristics at ART initiation

From July 2004 to July 2007, 6,727 patients aged 15 years or older
were initiated on ART in the Chiradzulu program. At initiation, the
median patient age was 35.2 years (IQR: 30.0-43.0), 65% of the
patients were women, 5% had tuberculosis, and 4.7% had Kaposi
sarcoma (Table 3). Among the 3,271 patients with available CD4 cell
count at ART initiation, 24.9% had less than 150 cells/mm?®.

The proportion of men was higher among LFU than among
non-LFU patients (66% vs. 54.4%; p-value =0.0001). Compared
to patients in care, LFU patients were younger (median age 34.3
vs. 35.2, p-value =0.0138) and more frequently diagnosed with
tuberculosis (8.1% vs. 4.9%; p-value =0.0001) or Kaposi sarcoma
(12.2% vs. 4%; p-value = 0.0001) at ART start.

Sixty percent of the 202 LFU patients who were traced and had
their vital status ascertained during the survey were reported dead
whereas just 10% of non-LFU patients died during the first year of
ART (p-value =0.0001).

Within the context of these comparisons, it should be noted that
the differences between LFU and non-LFU patients should
probably not be evaluated with p-values because these differences
are due to selection not to sampling error.

Comparison between survival estimates with and
without correction

As expected, with the uncorrected method based on the use of
routine program data, the highest one-year survival estimates were
84% in men and 91% in women (Figure 2).

With the updated-dataset method and the regression method
with wtl (i.e., ignoring that only a subset of LFU patients were
traced and had their vital status ascertained), the corrected one-
year estimates were 2% lower in men and women. The estimates
obtained with the time-dependent stratified Kaplan-Meier ap-
proach as with the survival regression were 7% and 6% lower than
the uncorrected estimates in men and women, respectively. With
the nomogram method, the results were intermediate; i.e., the

Table 3. Patient characteristics and mortality among lost to follow-up and non-lost-to-follow-up patients.

Tuberculosis at ART start
Kaposi sarcoma at ART start
Year of ART initiation
2004-2005
2006-2007
First CD4 cell count
<150 cells/mm?
=150 cells/mm?®
Missing
Patients with known vital status

Deaths among patients with known vital status in the first year of ART

Characteristics Cohort Non-LFU LFU p-value *
Number 6,727 6,144 583

Women 4,372 (65.0%) 4,055 (66.0%) 317 (54.4%) 0.0001
Age at ART start 35.2 [30.0;43.0] 35.2 [30.0;43.1] 34.3 [29.0;42.2] 0.0138

349 (5.2%) 302 (4.9%) 47 (8.1%) 0.001
315 (4.7%) 244 (4.0%) 71 (12.2%) 0.0001
0.0001
2455 (36.5%) 2,170 (35.3%) 285 (48.9%)
4,272 (63.5%) 3,974 (64.7%) 298 (51.1%)
0.0001
1,673 (24.9%) 1,573 (25.6%) 100 (17.1%)
1,598 (23.7%) 1,530 (24.9%) 68 (11.7%)
3,456 (51.4%) 3,041 (49.5%) 415 (71.2%)
6,346 6,144 202
731 (10.9%) 610 (9.9%) 120 (20.6%) 0.0001

doi:10.1371/journal.pone.0031706.t003

@ PLoS ONE | www.plosone.org

All values are expressed as number (percentage) but “Age at ART initiation” expressed as Median [Interquartile range].
*Pearson chi-square test was used for binary covariates and Student t-test for continuous covariates.
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corrected estimates were about 3% and 2.5% lower than the
uncorrected ones in men and women, respectively.

With the updated-dataset method, supposing that, for the
sensitivity analysis, all LFU patients died immediately after their
last visit, the one-year survival estimates were 72% in men and
82% in women. These estimates were lower than the estimates
obtained using alternative methods.

Comparisons between regression methods with and
without correction

Table 4 shows the results of the regressions of the death rate on
the studied factors, with and without correction for lack of
information on death.

Uncorrected mortality ratios decreased with time of follow-up
(uncorrected RR =0.80, 95% CI; 0.77-0.88 per month of follow-
up). These ratios were lower in women vs. men (0.62; 0.53-0.73)
and lower in patients with high vs. low CD4 cell counts (0.64;
0.48-0.86 for >150 vs. =150 cells/mm”®). These ratios were also
higher in patients with vs. without an initial diagnosis of Kaposi
sarcoma (2.11; 1.61-2.76) and in those who started ART more
recently (1.40; 1.17-1.66 for start in 2006-07 vs. 2004-05).

Compared to the uncorrected estimates, the estimates obtained
with correction showed slower decreases in mortality over time

@ PLoS ONE | www.plosone.org

(RR ranged from 0.85, 95% CI; 0.82-0.87 with wtl to 0.87; 0.84—
0.90 with wt2 regression) and lower mortality ratios in patients
who started ART more recently (RR ranged from 1.29; 1.08-1.54
with wt3 to 1.34; 1.12-1.60 with wtl regression, for 2006-07 vs.
2004-05). Higher ratios were observed in patients with vs. without
initial diagnosis of Kaposi sarcoma (RR ranged from 2.64; 2.01—
3.48 with wt3 to 3.09; 2.35-4.06 with wt2 regression) and in
patients diagnosed with vs. without tuberculosis at ART start (RR
ranged from 2.06; 1.46-2.90 with wt3 to 2.28; 1.62-3.22 with wtl
regression). In contrast, mortality ratios in patients with high vs.
low CD#4 cell counts were similar before and after correction (RR
ranged from 0.66; 0.49-0.87 with wt3 to 0.69; 0.51-0.92 with wtl
regression, for >150 vs. <150 cells/mm”).

Discussion

A number of previous studies have raised concerns regarding
poor patient retention in HIV care and warned that ART
program effectiveness could thus be overstated [16,17]. Our
findings illustrate the ways in which different statistical methods
based on double-sampling can be used to correct survival estimates
and how the reduction of bias varies according to the method
used. In this large HIV treatment cohort in rural Malawi where
survival estimates were 91% in women and 84% in men, the
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Table 4. Relative mortality estimated with Poisson regression on uncorrected or corrected data.

Characteristics at ART initiation Uncorrected Weight 1 Weight 2 Weight 3
Duration of follow-up (months) 0.80 [0.77-0.82] 0.85 [0.82-0.87] 0.87 [0.84-0.90] 0.86 [0.93-0.89]
Sex (women vs. men) 0.62 [0.53-0.73] 0.67 [0.57-0.79] 0.69 [0.58-0.81] 0.67 [0.57-0.79]
CD4 cell count (vs. <150 cells/mm?)

=150 cells/mm?> 0.64 [0.48-0.86] 0.69 [0.51-0.92] 0.67 [0.51-0.90] 0.66 [0.49-0.87]

Missing 1.51 [1.23-1.86] 1.33 [1.07-1.64] 1.41 [1.14-1.74] 143 [1.16-1.77]
Tuberculosis (Yes vs. no) 1.07 [0.76-1.50] 2.28 [1.62-3.22] 2.27 [1.61-3.21] 2.06 [1.46-2.90]
Kaposi sarcoma (Yes vs. no) 2.11 [1.61-2.76] 2.96 [2.25-3.89] 3.09 [2.35-4.06] 2.64 [2.01-3.48]
Year of ART start (2006-07 vs. 2004-05) 1.40 [1.17-1.66] 1.34 [1.12-1.60] 1.33 [1.11-1.59] 1.29 [1.08-1.54]

All the values are expressed as mortality ratios [95% confidence interval].
doi:10.1371/journal.pone.0031706.t004

corrected estimates ranged from 89% and 82%, respectively, with
the simplest methods, to 85% and 77 %, respectively with the most
sophisticated ones. These findings highlight the importance of
accounting for the unknown mortality in LFU patients and the
benefit of using sophisticated methods [14].

Broadly speaking, there are two ways of obtaining survival
estimates. The first is “retrospective”; it uses outreach data —not
collected for weighting— through double sampling but adjusts
patient retention to be as representative as possible. The second is
“prospective”; it identifies the sampling frame ahead of time,
which ensures the representativeness of the double-sampled data
by design. Each way has its proper use, but two advantages of the
prospective approach are that it requires fewer assumptions and
subject only to sampling error.

As in previous studies, we observed a higher risk of death among
LFU patients than among patients retained in care [18]. The use of
uncorrected survival estimates would have therefore led to an
overestimation of the program performance. As described in a
South African study, linking patient data from HIV programs to
vital registers would be the ideal way to obtain unbiased estimates of
patient survival [19,20]. However, in many Sub-Saharan Africa
settings, vital registration is not available, which requires the use of
alternative correction methods. In the Chiradzulu program, the use
of data from a survey conducted to ascertain the vital status of LFU
patients and update the routine information did not succeed in
correcting for loss of follow-up because of the small proportion of
LFU patients who were traced and had their vital status ascertained.

The survival estimates given by the updated-dataset and the
regression methods corrected for lack of information on death
using the first weight option were only slightly lower that those
obtained without correction. This is because these two methods
ignore that a subset of LFU patients were not traced or their vital
status not ascertained. Higher estimates were obtained using the
nomogram and the stratified Kaplan-Meier approaches by
applying to all LFU patients the estimated death rate observed
among LFU patients who were traced and had their vital status
ascertained. Two advantages of the nomogram are that it is easy to
implement and does not require prior double-sampling because it
uses external data. Nomogram-derived estimates can be consid-
ered as a preliminary correction; however, caution is necessary in
the absence of double-sampling data.

The methods that take into account the proportion of LFU
patients at each time point during follow-up gave lower survival
estimates than the above-cited ones and may be considered as

gold-standards [13].

@ PLoS ONE | www.plosone.org

Three different weightings were considered for correction: Weight 1= 1, Weight 2 =the inverse of the proportion of LFU patients who were traced and had their vital
status ascertained, Weight 3 =the inverse of the time-specific proportion of them.

The regression method with the weighting option 2 (wt2)
proposed in the present study is close to another method proposed
recently within the same context [15]. The regression method with
the weighting option 3 (wt3) is a variant that accounts for changes
in the probability of loss to follow-up over time [13]. In our cohort,
the regression method proposed to correct survival estimates
taking into account the uneven likelihood of outcome ascertain-
ment among patients gave similar results to the uncorrected
regression methods but only for some factors. The uncorrected
survival regression analysis was sufficient to estimate the effects of
factors such as the initial CD4 cell count; this highlights the
importance of this predictor of mortality independently of patient
gender or other factors. However, the mortality ratios related to
tuberculosis doubled and the ratios related to Kaposi sarcoma
diagnosis at ART start increased by 25-40% when corrected
regression methods were used. These higher ratios may be
explained by the expected increased risk of loss to follow-up and
death among the patients presenting severe tuberculosis and
Kaposi sarcoma disease. This finding highlights the need to
correct survival regression models for the missing information on
death within the context of program evaluation in large HIV
cohorts with high loss to follow-up rates. However, this approach
might be too complicated to be implemented in routine programs.
Simpler statistical methods, such as the simulation-extrapolation
method (SIMEX) [21,22], could be good alternatives but they
require double-sampling.

Survival regression assumed that the sensitivity to correctly
identify deaths in the program was known and equal to the
observed estimation; however, this assumption may be wrong.
Structural equation modelling would avoid the need for separate
estimations of sensitivity and the death rate and provide accurate
confidence intervals.

The present study has several limitations. In our cohort, the
proportion of patients who were traced and had their vital status
ascertained represented only one third of all LFU patients. A study
by Anglaret et al. suggested that unfound LFU patients are at
higher risk of death than found ones [3]. This means that the
approaches that assume that traced LFU patients are a
representative sample of all LFU patients would overestimate
survival. A selection process could have affected the distribution of
the outcomes in the traced sample. Patients with no recorded
residence could be more vulnerable to mortality or have poor
access to health services. Patients living outside Chiradzulu district
may also differ from the others; however, there was no evidence to
suggest that a geographical selection would bias the results. Finally
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and interestingly, one out of six patients traced was not found. A
number of recorded addresses were probably not correct but no
address checking was carried out neither at inclusion nor when
patients moved out of the district. It should also be noted that
Chiradzulu district was one of the first places in Malawi to provide
ART. As the access to treatment increased, a number of patients
may have moved out of the district to receive care closer to their
homes or home villages.

Some relevant patient characteristics, such as the WHO stage or
the adherence to treatment, could not be used in the regression
models because of missing or unavailable information. For
example, the CD4 cell counts were not available in half of the
patients. The lack of information on these counts is known to be
frequent among patients with advanced HIV disease at AR start.
This is why a category for missing CD4 count was included in the
regression analysis even though this practice is not generally
advisable. Finally, a comparison between long-term survival
estimates (one year after ART start) obtained with various
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correction methods should be performed because the proportion
of deaths among LFU patients and the factors associated with
outcome ascertainment in a program are likely to change with the
increase of time on ART.

In conclusion, evaluations of HIV programs with high loss to
follow-up rates should be based on corrected survival estimates.
Though all the correction methods proposed in this article may be
carried out using standard statistical software, their routine use in
field surveys is not straightforward. The future development of a
simple application should help program managers use these
methods in routine program evaluation.
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