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Abstract
The increasing prevalence of acquired and transmitted HIV-1 drug resistance is an obsta-

cle to successful antiretroviral therapy (ART) in the low- and middle-income countries

(LMICs) hardest hit by the HIV-1 pandemic. Genotypic drug resistance testing could

PLOS ONE | DOI:10.1371/journal.pone.0145772 December 30, 2015 1 / 17

OPEN ACCESS

Citation: Rhee S-Y, Jordan MR, Raizes E, Chua A,
Parkin N, Kantor R, et al. (2015) HIV-1 Drug
Resistance Mutations: Potential Applications for
Point-of-Care Genotypic Resistance Testing. PLoS
ONE 10(12): e0145772. doi:10.1371/journal.
pone.0145772

Editor: Paul Richard Harrigan, University of British
Columbia, CANADA

Received: April 7, 2015

Accepted: December 8, 2015

Published: December 30, 2015

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced, distributed,
transmitted, modified, built upon, or otherwise used
by anyone for any lawful purpose. The work is made
available under the Creative Commons CC0 public
domain dedication.

Data Availability Statement: Data are available from
the Stanford University HIV Drug Resistance
Database (http://hivdb.stanford.edu/pages/poc.html).

Funding: RWS and SYR were supported in part by a
grant from the Bill and Melinda Gates Foundation and
from the NIH (AI068581). NP was supported by a
grant from the Bill and Melinda Gates Foundation.
MRJ was supported in part by CFAR 1P30A142853.
This project has been supported in part by the
President’s Emergency Plan for AIDS Relief
(PEPFAR) through the Centers for Disease Control
and Prevention (CDC). Data First Consulting

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0145772&domain=pdf
https://creativecommons.org/publicdomain/zero/1.0/
http://hivdb.stanford.edu/pages/poc.html


facilitate the choice of initial ART in areas with rising transmitted drug resistance (TDR)

and enable care-providers to determine which individuals with virological failure (VF) on a

first- or second-line ART regimen require a change in treatment. An inexpensive near

point-of-care (POC) genotypic resistance test would be useful in settings where the

resources, capacity, and infrastructure to perform standard genotypic drug resistance

testing are limited. Such a test would be particularly useful in conjunction with the POC

HIV-1 viral load tests that are currently being introduced in LMICs. A POC genotypic resis-

tance test is likely to involve the use of allele-specific point mutation assays for detecting

drug-resistance mutations (DRMs). This study proposes that two major nucleoside

reverse transcriptase inhibitor (NRTI)-associated DRMs (M184V and K65R) and four

major NNRTI-associated DRMs (K103N, Y181C, G190A, and V106M) would be the most

useful for POC genotypic resistance testing in LMIC settings. One or more of these six

DRMs was present in 61.2% of analyzed virus sequences from ART-naïve individuals

with intermediate or high-level TDR and 98.8% of analyzed virus sequences from individu-

als on a first-line NRTI/NNRTI-containing regimen with intermediate or high-level acquired

drug resistance. The detection of one or more of these DRMs in an ART-naïve individual

or in a individual with VF on a first-line NRTI/NNRTI-containing regimen may be consid-

ered an indication for a protease inhibitor (PI)-containing regimen or closer virological

monitoring based on cost-effectiveness or country policy.

Introduction
The global scale-up of antiretroviral therapy (ART) has dramatically reduced HIV-1-associated
mortality, mother-to-child HIV-1 transmission, and adult HIV-1 incidence [1–4]. These public
health accomplishments are the result of the widespread administration of standardized first-
line regimens containing two nucleoside reverse transcriptase inhibitors (NRTIs) plus a non-
nucleoside RT inhibitor (NNRTI), followed by a ritonavir-boosted lopinavir (LPV/r)-contain-
ing regimen in those individuals who subsequently develop virological failure (VF) [5, 6]. How-
ever, the margin of long-term ART success is compromised by the development of acquired
drug resistance (ADR) and transmitted drug resistance (TDR) [7, 8].

Between 10% and 30% of individuals receiving a first-line NRTI/NNRTI-containing treat-
ment regimen will develop VF at some point during their treatment [9–11]; the majority of
these individuals are expected to acquire NRTI- and/or NNRTI-resistant viruses [7, 11–13]. As
the number of individuals with ADR has increased so has the proportion of newly infected
individuals with TDR [7, 14–16]. In many regions, the proportion of individuals with transmit-
ted NNRTI resistance has been increasing since ART scale-up [7, 14, 15]. In recent studies,
TDR levels above five percent were reported in about one-fourth of the surveys conducted in
Sub-Saharan Africa and South/Southeast Asia and more than one-half of the surveys con-
ducted in the Latin America/Caribbean region [7, 14, 15, 17, 18].

In upper-income countries, HIV-1 genotypic resistance testing is used to guide the selec-
tion of initial ART and subsequent treatments in individuals with VF. However, in the low-
and middle-income countries (LMICs), the resources and capacity to perform standard geno-
typic resistance testing for individual management are limited or concentrated in a few cen-
tral laboratories. A point-of-care (POC) genotypic resistance test would avoid the logistical
challenges and delays associated with centralized genotypic resistance testing. Even in the

HIV-1 Drug Resistance Mutations

PLOS ONE | DOI:10.1371/journal.pone.0145772 December 30, 2015 2 / 17

provided support in the form of salaries for authors
NP, but did not have any additional role in the study
design, data collection and analysis, decision to
publish, or preparation of the manuscript. The specific
roles of these authors are articulated in the ‘author
contributions’ section. The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: One of the authors is
employed by a commercial company, Data First
Consulting. This does not alter the authors'
adherence to PLOS ONE policies on sharing data
and materials.



context of a public health approach to ART, where few standardized regimens are available, a
reliable and inexpensive POC genotypic resistance test would enable HIV-1 care providers to
optimize HIV treatment management and make informed treatment decisions for three cate-
gories of individuals: (1) ART-naïve individuals starting therapy; (2) individuals with VF on
an initial NRTI/NNRTI-containing regimen; and (3) individuals with persistently detectable
viremia on a first- or second-line protease inhibitor (PI)-containing regimen. The objective
of this study was to develop recommendations on the most useful drug-resistance mutations
(DRMs) for genotypic drug resistance testing to encourage manufacturers developing POC
diagnostic assays.

Materials and Methods

Conceptual design
As the choice of DRMs for a POC genotypic resistance test depends on the proportions of
DRMs in different populations and on expert opinion of the clinical significance of DRMs in
LMIC settings, the senior author and the main funder agreed that this paper should be writ-
ten by a group of experts in the areas of drug resistance, assay development, and public
health. The senior author joined with HIV drug resistance experts at the World Health Orga-
nization (WHO), U.S. National Institutes of Health (NIH), and U.S. Centers for Disease Con-
trol and Prevention (CDC) to assemble a group of experts who reviewed successive drafts of
this manuscript.

Because NRTIs, NNRTIs, and PIs are the ARV classes used in most LMICs, we sought to
identify the NRTI, NNRTI, and PI-associated DRMs with the greatest sensitivity and specificity
for ARV selection pressure and the greatest effect on in vitro and in vivo ARV susceptibility.
The frequency of mutations was analyzed in publicly available datasets comprising individuals
with TDR, VF on a first-line NRTI/NNRTI-containing regimen, and VF on an initial boosted
PI-containing regimen.

Mutation classification
The Stanford HIV Drug Resistance Database (HIVDB) mutation penalty scoring system was
used to identify major NRTI, NNRTI, and PI-resistance mutations and to characterize the level
of resistance in clinical isolates. HIVDB has an online genotypic resistance interpretation pro-
gram to help clinicians and laboratories interpret HIV-1 genotypic resistance tests. The program
accepts submitted RT, protease and/or integrase sequences and returns a list of penalty scores
for each DRM in the sequence and an estimate of reduced susceptibility for each ARV obtained
by adding the penalty scores for each DRM. The DRM penalty scores (http://hivdb.stanford.
edu/DR/) are based upon the sensitivity and specificity of a mutation for selective ARV drug
pressure and the effect of a mutation on in vitro susceptibility and virological response to ther-
apy. The DRM penalty scores also reflect consensus about the clinical significance of a DRM as
reflected by experts such as the IAS-USA Drug Resistance Mutations Group [19].

An HIVDB penalty score of 15 to 29 predicts low-level resistance; a score of 30 to 59 predicts
intermediate resistance; and a score of 60 or above predicts high-level resistance. In this analysis,
NRTI and PI DRMs with a score of 30 or more and NNRTI DRMs with a score of 60 or more
are referred to as major DRMs. A lower score cut-off is used for the NRTIs and PIs because
high-level NRTI and PI resistance usually results from the accumulation of multiple DRMs
associated with low-level and intermediate resistance rather than from a single DRM associated
with high-level resistance. S1, S2 and S3 Tables contain the HIVDB DRM penalty scores and
summarize information that were considered in developing the HIVDB scoring system.
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Analyses
To identify the most common major NRTI and NNRTI DRMs associated with TDR, we used a
dataset of sequences from more than 50,000 individuals included in a recently published meta-
analysis of 287 studies of which 151 studies were conducted in Sub-Saharan Africa and the
LMICs of South/Southeast Asia [16].

To identify the most common major NRTI and NNRTI DRMs associated with VF on a
first-line NRTI/NNRTI-containing regimen, we used a dataset of sequences from 4,926 indi-
viduals from 68 published studies available in HIVDB through June 2014 for which RT
sequences were available. Each study contained sequences from five or more individuals receiv-
ing a first-line regimen comprising emtricitabine (FTC) or lamivudine (3TC) plus abacavir
(ABC) stavudine (d4T), tenofovir (TDF), or zidovudine (AZT) plus efavirenz (EFV) or nevira-
pine (NVP).

To identify the most common major PI-associated DRMs, we used a dataset of sequences
from 1,214 previously PI-naïve individuals with VF on an LPV/r-containing regimen. An
insufficient number of published sequences were available from previously PI-naïve individuals
receiving ritonavir-boosted atazanavir (ATV/r) or darunavir (DRV/r) to perform a similar
analysis. Therefore, for these PIs, we used data from published studies whether or not the
underlying sequences were publicly available.

For the analysis of individuals with TDR or VF on a first-line NRTI/NNRTI-containing reg-
imen we examined the sensitivity of sets of mutations for identifying individuals having viruses
with intermediate or high-level resistance to the NRTIs 3TC, ABC, AZT, FTC, or TDF; inter-
mediate or high-level resistance to the NNRTIs NVP or EFV; and intermediate or high-level
resistance to one of the preceding NRTIs or NNRTIs. For the RT and protease, different muta-
tions at the same position (e.g., M184V and M184I) were treated as separate DRMs despite the
fact that some POC assays may be designed to detect multiple amino acids at the same position.
Tier 1 POC DRMs were defined as DRMs that the authors believed should ideally be included
in an initial version of a POC genotypic resistance test. Non-tier 1 POC DRMs were defined as
DRMs that might be useful in subsequent versions of a POC test contingent upon changes in
ARV treatment strategies and the molecular epidemiology of HIV-1 drug resistance.

Results

Most common major NRTI- and NNRTI-resistance mutations in
individuals with TDR
Fig 1 shows the absolute and cumulative prevalence of the major NRTI and NNRTI DRMs in
RT sequences from a recently published individual-level meta-analysis of more than 50,000
ARV-naïve individuals in 287 published studies [16]. M184V was the most common transmit-
ted major NRTI-associated DRM, occurring in 54% of viruses from individuals with intermedi-
ate or high-level NRTI TDR in LMICs and 31% of viruses from individuals with intermediate
or high-level NRTI TDR in upper-income countries. M184I, K65R, L74V/I, Y115F and the
TAMs K70R and T215Y/F were the next most common transmitted major NRTI DRMs. The
TAMs M41L, D67N/E/G and K219Q/E/N/R and the T215 revertant mutations (T215C/D/E/S/
I/V) were the most common non-major transmitted NRTI DRMs. Subtype was not a major
determinant of which NRTI DRMs occurred in TDR isolates in LMICs.

K103N, Y181C and G190A were the three most common NNRTI DRMs in all regions and
subtypes, occurring in more than 60% of viruses with intermediate or high-level NNRTI TDR.
K103S, V106M, Y188L and G190S/E accounted for most of the remaining transmitted major
NNRTI DRMs in LMICs. A98G and K101E were the most common non-major transmitted
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Fig 1. Prevalence of major NRTI and NNRTI resistancemutations in individuals with transmitted drug resistance. Absolute and cumulative
prevalence of each major nucleoside (NRTI) and nonnucleoside RT Inhibitor (NNRTI) drug-resistance mutation (DRM) in individuals with intermediate or
high-level transmitted NRTI or NNRTI resistance from a meta-analysis of 287 studies published between 2000 and 2013 are shown. Low- and middle-
income countries include Countries of Sub-Saharan Africa, South / Southeast Asia, and Latin America and Caribbean. Upper-Income Countries: Countries of
North America and Europe, and upper-income countries in Southeast Asia. Major NRTI DRMs include those with an HIVDB score�30. There were no
insertions or deletions between codons 67 and 70. Major NNRTI DRMs include those with an HIVDB score�60. Absolute %: number of individuals with DRM
/ number of individuals with intermediate or high-level transmitted NRTI or NNRTI resistance. Cumulative %: number of individuals with one or more of the
preceding major DRMs in the list / number of individuals with intermediate or high-level transmitted NRTI or NNRTI resistance.

doi:10.1371/journal.pone.0145772.g001
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NNRTI DRMs. V106M was significantly more common in subtype C viruses and was the
fourth most common NNRTI DRM in this subtype.

Most common major NRTI- and NNRTI-resistance mutations in
individuals with first-line VF
S4 Table summarizes the number of sequences and corresponding individuals receiving NRT/
NNRTI first-line ART according to regimen and HIV-1 subtype. Fifty-five percent, 27%, 16%
and 2% of individuals received a d4T-, AZT-, TDF- or ABC-containing regimen, respectively.
Fifty-four percent received EFV and 46% received NVP. The most common subtypes were C
(46%), circulating recombinant form (CRF) 01_AE (15%), B (11%), A (8%), G (8%) and
CRF02_AG (7%). Seventy-three percent of individuals had one or more major NRTI DRM and
one or more major NNRTI DRM. Nine percent had a major NNRTI DRM but no major NRTI
DRM; 2% percent had a major NRTI DRM but no major NNRTI DRM; and 16% had no major
NRTI or NNRTI DRM.

Fig 2 shows that in viruses from individuals in LMICs with intermediate or high-level NRTI
resistance following VF on a first-line NRTI/NNRTI-containing regimen, the most common
major DRMs were M184V (91.5%) and M184I (3.7%), K65R (9.8%), and the TAMs K70R
(14.6%), T215Y (11.0%) and T215F (9.3%). About one-half of the viruses with K65R did not
have M184V, making K65R the second largest contributor to the cumulative proportion of
viruses with a major NRTI DRM. K65R also occurred in 48% of 467 individuals with VF on a
first-line TDF-containing regimen (S5 Table). The TAMs nearly always occurred in combina-
tion with M184V and contributed less to the cumulative proportion of viruses with a major
NRTI DRM than did K65R.

The spectrum of DRMs in 712 children was similar to adults with the exception that L74V/I
occurred more often in children because a higher proportion of children received an ABC-con-
taining regimen (S6 and S7 Tables). Indeed, among both adults and children receiving ABC,
L74V/I were the second most common major NRTI DRMs associated with acquired NRTI
resistance after M184V [20, 21]. L74V/I rarely occurred in the absence of M184V.

Fig 2 shows that the most common NNRTI DRMs in viruses from individuals in LMICs
with intermediate or high-level resistance on a first-line NRTI/NNRTI-containing regimen
were K103N (45.5%), Y181C (27.0%), G190A (21.0%), and V106M (18.7%). One or more of
these four DRMs occurred in 88.8% of viruses with intermediate or high-level acquired NNRTI
resistance. V106M was the second-most common NNRTI DRM in subtype C viruses, occur-
ring in 33% of individuals with a major NNRTI DRM. The two next most common NNRTI
DRMs—Y188L and G190S –accounted for an additional 5.7% of viruses with acquired inter-
mediate or high-level NNRTI resistance.

The sensitivity of combined NRTI and NNRTI-resistance mutations for
detecting TDR and ADR
Of the six DRMs with the highest cumulative sensitivity for detecting intermediate or high-
level resistance to an NRTI or NNRTI on a first-line NRTI/NNRTI-containing regimen (K65R,
M184V, K103N, V106M, Y181C, G190A), all but K65R and V106M were also the most com-
mon DRMs occurring in individuals with TDR. In LMICs, this set of six DRMs was 98.8% sen-
sitive for detecting ADR on a first-line NRTI/NNRTI regimen and 61.2% sensitive for
detecting TDR in ART-naïve individuals (Fig 3). No significant differences in sensitivity were
observed for the subset of children with ADR on a first-line NRTI/NNRTI-containing regimen
or the subset of adult individuals with ADR on a first-line TDF-containing regimen (Fig 3).
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Fig 2. Prevalence of major NRTI and NNRTI resistancemutations in individuals with acquired drug resistance. Absolute and cumulative prevalence
of each major nucleoside (NRTI) and nonnucleoside RT inhibitor (NNRTI) drug-resistance mutation (DRM) in 4,926 individuals with virological failure and
intermediate or high-level acquired NRTI or NNRTI resistance while receiving a first-line NRTI/NNRTI-containing regimen are shown. Regimens include four
AZT/d4T-containing regimens—AZT/d4T+3TC+EFV/NVP (n = 4,020), four TDF-containing regimens—TDF+3TC/FTC+EFV/NVP (n = 772), and two ABC-
containing regimens—ABC+3TC+NVP/EFV (n = 134). Low- and Middle-Income Countries: Countries of Sub-Saharan Africa, South / Southeast Asia, and
Latin America and Caribbean; Upper-Income Countries: Countries of North America and Europe, and upper-income countries in Southeast Asia. NRTI DRM
with an HIVDB score�30. There were no insertions or deletions between codons 67 and 70. NNRTI DRMs with an HIVDB score�60. Absolute %: number of
individuals with DRM / number of individuals with intermediate or high-level NRTI or NNRTI resistance. Cumulative %: number of individuals with one or more
of the preceding DRMs in the list / number of individuals with intermediate or high-level NRTI or NNRTI resistance.

doi:10.1371/journal.pone.0145772.g002
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Based on the clinical significance of these DRMs and their sensitivity and specificity for ADR
and, to a lesser extent TDR, these DRMs were classified as tier 1 POC DRMs.

Y188L and G190S were the most common major non-tier 1 NNRTI DRMs associated with
ADR on a first-line NRTI/NNRTI-containing regimen and among the most common non-tier
1 NNRTI DRMs associated with TDR. K70R, L74V/I, Y115F, M184I, and T215Y/F were the
most common major non-tier 1 DRMs associated with ADR on a first-line NRTI/NNRTI-con-
taining regimen and with TDR. Compared to an assay that detected just tier 1 RTI DRMs, an

Fig 3. Sensitivity of Six Tier 1 RTI resistancemutations for detecting transmitted or acquired drug resistance.Cumulative prevalence or sensitivity of
the Six Tier 1 RT inhibitor (RTI) drug-resistance mutations (DRMs) for detecting transmitted or acquired drug resistance in viruses from individuals with
intermediate or high-level NRTI or NNRTI resistance is shown. Transmitted drug resistance (TDR) and acquired drug resistance (ADR) were defined as
being associated with� intermediate NRTI or NNRTI resistance. Major NRTI-associated DRMs (HIVDB score�30) included K65R, D67 deletion, T69
insertion, K70R, L74V/I, Y115F, Q151M, M184I/V, and T215F/Y. Major NNRTI-associated DRMs (HIVDB score�60) included: L100I, K101P, K103N/S,
V106A/M, Y181C/I/V, Y188L/H/C, G190A/S/E/Q, and M230L. Abbreviations: LMICs (Low- and Middle-Income Countries), TDF (tenofovir).

doi:10.1371/journal.pone.0145772.g003
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assay that detected tier 1 and the aforementioned nine additional non-tier 1 DRMs would have
an increased sensitivity for detecting intermediate or high-level TDR of 67.9% (compared with
61.2%) and for detecting dual NRTI/NNRTI resistance in individuals with ADR of 94.2%
(compared with 84.9%). However, an assay with tier 1 and the nine non-tier 1 RTI DRMs
would not have a meaningful effect on the sensitivity for detecting intermediate or high-level
ADR resistance to either NRTIs or NNRTIs (99.5% compared with 98.8%).

DRMs emerging in previously PI-naïve individuals receiving LPV/r, ATV/
r, and DRV/r
Table 1 shows the most common major LPV-associated DRMs in published protease
sequences from 1,214 previously PI-naïve individuals with VF on an LPV/r-containing regi-
men. Of these 1,214 individuals, 203 (17%) had viruses with predicted intermediate or high-
level LPV resistance. The most common major PI DRMs were V82A, I76V, I84V and L47A.
One or more of these four DRMs occurred in 88% of viruses with intermediate or high-level
LPV/r resistance. The next two most common major LPV DRMs—I50V and V82F –accounted
for an additional 4% of viruses with predicted intermediate or high-level LPV resistance. The
remaining 8% of viruses with predicted intermediate or high-level LPV resistance had a combi-
nation of two or more PI DRMs with lower mutation scores, including V32I, M46I, I54M/L/V,
I47V, V82S/T/M and L90M. The most common subtypes of these 203 viruses were C (49%),
CRF01_AE (14%), CRF01_AG (12%), B (8%), G (7%) and A (5%). Overall 170 (84%) of the
203 LPV-resistant viruses had predicted intermediate or high-level cross-resistance to ATV/r;
36 (18%) had predicted intermediate or high-level cross-resistance to DRV/r.

Few protease sequences are available from PI-naïve individuals with VF on ATV/r- or
DRV/r-containing regimens. Published reports of aggregated data indicate that I50L and N88S
are the main DRMs developing in PI-naïve individuals with VF on an ATV- or ATV/r-

Table 1. Absolute and Cumulative Prevalence of Major Lopinavir-Associated Mutations in 203 Viruses
with Intermediate or High-Level Lopinavir (LPV) Resistance from 1,214 Previously PI-Naïve Individu-
als with Virological Failure on a Ritonavir-Boosted LPV (LPV/r)-Containing Regimen.

DRM Prevalence of Major LPV/r DRMs (n = 203 Viruses with
Intermediate or High-Level LPV Resistance)

Absolute %a Cumulative %b

V82A 59.6 59.6

L76V 32.5 74.9

I84V 15.3 82.8

I47A 8.4 88.2

V82F 2.5 90.1

I50V 4.9 91.6

Other c 8.4 100

aAbsolute %: number of individuals with major DRM / number of individuals with intermediate or high-level

LPV resistance.
bCumulative %: number of individuals with one or more of the preceding major LPV/r DRMs in the list /

number of individuals with intermediate or high-level LPV resistance.
cOther includes viruses with intermediate or high-level resistance arising from an accumulation of mutations

with an HIVDB penalty score <30 including: M46I/I54V/V82S (n = 4), I54V/V82M (n = 3), I54V/L90M

(n = 1), V32I/M46I/I47V/I54M/L90M (n = 1), I54V/V82T/L90M (n = 1), M46I/I54V/V82T (n = 1), I54V/V82T

(n = 1), I54V/V82S/V82T (n = 1), L90M (n = 1), M46I/L90M (n = 1), M46I/I47V/I54V/V82S (n = 1).

doi:10.1371/journal.pone.0145772.t001

HIV-1 Drug Resistance Mutations

PLOS ONE | DOI:10.1371/journal.pone.0145772 December 30, 2015 9 / 17



containing regimen [22–24]. These DRMs do not confer cross-resistance to LPV or DRV [25].
In fact, I50L is associated with increased susceptibility to LPV, DRV and other PIs [26].

Discussion

Clinical scenarios in which POC genotypic resistance testing would be
most useful
In regions where surveillance indicates elevated levels of drug resistance in individuals begin-
ning ART, pre-therapy POC genotypic resistance testing would identify those individuals who
should receive standard first-line therapy and those who should instead receive a boosted PI-
containing regimen. Genotypic resistance testing would also be particularly useful in the man-
agement of the increasing proportion of individuals presenting for care with reported or unre-
ported prior exposure to ARVs and to ensure that HIV-1-infected pregnant women with drug-
resistant viruses receive the optimal regimen for themselves and to prevent mother-to-child
transmission.

POC genotypic resistance testing would also be useful in the management of patients receiv-
ing an initial NRTI/NNRTI containing regimens. As there is an expanding pipeline of POC
and near-POC assays for measuring HIV-1 virus load [27–30], coupling a POC genotypic resis-
tance test with a POC viral load test will help HIV care providers determine in a single visit
which individuals require further adherence support and which individuals should switch regi-
mens [15, 31, 32].

The current WHO algorithm for the management of VF includes an adherence intervention
after the first detected VF and a repeated virus load test three months thereafter. If the second
virus load test confirms VF, a switch to second-line ART is recommended. Despite this recom-
mendation, HIV care providers are often uncertain as to when to switch individuals to the more
costly second-line ARVs out of concerns that VF resulted from nonadherence. A POC genotypic
resistance test would provide confidence and empower care providers to make timely treatment
decisions. Same day treatment decisions would eliminate the risk of loss to follow-up between
the first and second virus load visits, minimize the risk of specimen mishandling, and allow
adherence support strategies to be informed by the results of genotypic resistance testing.

Selection of DRMs for POC genotypic resistance testing
One or more of the six tier 1 RT inhibitor DRMs was present in 61.2% of ARV-naïve individu-
als with intermediate or high-level resistance and in 98.8% of ARV-experienced individuals
with intermediate or high-level resistance following VF on a first-line NRTI/NNRTI-contain-
ing regimen. These six DRMs include two NRTI-associated DRMs (K65R and M184V) and
four NNRTI-associated DRMs (K103N, V106M, Y181C, and G190A). These DRMs are spe-
cific indicators of drug resistance in that they each cause clinically significant reduced suscepti-
bility to one or more of the ARVs used in LMICs and rarely occur in the absence of selective
ARV pressure. A POC genotypic resistance assay that reliably detected these six DRMs would
therefore be moderately sensitive and highly specific for detecting TDR and highly sensitive
and specific for detecting NRTI or NNRTI resistance in individuals with VF on a first-line
NRTI/NNRTI-containing regimen.

In an ART-naïve individual, the presence of each of the tier 1 DRMs except K65R may be
considered an indication for starting an initial PI-containing regimen or closer virological
monitoring based on cost-effectiveness or country policy. The presence of K65R would be an
indication for using an AZT/3TC nucleoside backbone. In individuals with VF on a 1st-line
NRTI/NNRTI-containing regimen, the presence of a tier 1 DRM indicates that the regimen
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has reduced antiviral activity. Although the presence of a tier 1 DRM in individuals with VF on
a first-line NRTI/NNRTI regimen would not preclude a virological response to continued ther-
apy with improved adherence [33–35], continued therapy is expected to result in a higher rate
of immunological and clinical deterioration than would occur if the individual is switched to a
second-line PI-based therapy.

The most common additional major NNRTI-resistance mutations included Y188L and
G190S, both of which are usually two-base pair mutations that cause very high levels of resis-
tance to NVP and EFV. The next most common additional major NRTI-resistance mutations
include M184I, which often precedes M184V in individuals receiving 3TC and FTC, L74V/I,
which occurs most commonly in individuals receiving ABC, and the TAMs K70R and T215Y/F.
A POC genotypic resistance assay able to detect additional RTI-associated DRMs would have
increased sensitivity for TDR and for detecting dual NRTI/NNRTI resistance in individuals
with VF on a first-line NRTI/NNRTI-containing regimen. However, considering the technical
challenges associated with the inclusion of each additional DRM in a point mutation assay, the
inclusion of non-tier 1 RTI-associated mutations in a POC assay was considered a lower
priority.

PI DRMs develop much less often in individuals receiving a potent ritonavir-boosted PI-
containing regimen such than do NRTI and NNRTI DRMs in individuals receiving NRTI/
NNRTI-containing regimens [20, 24, 36–39]. The reduced risk of resistance associated with
boosted PIs is likely due to the narrow drug concentration range in which PI levels are both
low enough to allow virus replication and high enough to exert selective drug pressure [40].
Indeed, most individuals without PI DRMs who experience VF while on an initial PI-contain-
ing regimen achieve virologic suppression with improved adherence [41]. The possibility that
mutations outside of protease may also be primary causes of VF is an area of active investiga-
tion [42, 43].

Our analysis suggests that the four mutations V82A, L76V, I84V, and I47A would have a
sensitivity approaching 90% for detecting intermediate or high-level LPV resistance and that
I50L and N88S are the most common major PI-associated DRMs to develop in individuals
with VF and intermediate or high-level ATV resistance on an initial ATV/r-associated regi-
men. However, considering the recent addition of ATV/r to the WHO treatment guidelines
and the absence of recommended third-line treatment options [44], it would be useful to have
additional data on the genetic mechanisms of PI resistance in LMICs before making firm rec-
ommendations on an optimal set of POC DRMs for use in individuals receiving an initial
boosted PI-containing regimen.

Limitations of POC genotypic resistance testing
Although the analyses in this manuscript show that a carefully chosen set of DRMs provides
useful information for the most common treatment scenarios in LMICs, a POC genotypic
resistance test would not detect many DRMs that would be detected by standard sequencing.
The added information provided by sequencing would be most useful in individuals with VF
who have received multiple ARV regimens and in situations in which the extent of drug resis-
tance was important. The usefulness of a POC assay that detected a limited set of mutations
would also depend on active surveillance systems to identify emerging trends in the prevalence
of transmitted and acquired clinically significant DRMs.

Standard genotypic resistance testing using dideoxyterminator Sanger sequencing is becom-
ing less expensive and can be performed for under $100 if the sequence is limited to the most
relevant part of the RT gene [45, 46]. Next-generation sequencing using the Illumina MiSeq
platform can be performed for an even lower cost if large numbers of samples are multiplexed
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in a single sequencing reaction [47]. The extensive batching of samples required to obtain this
cost reduction, however, is a disadvantage in settings where timeliness is important.

Although many allele-specific point mutation assays for HIV-1 drug resistance have been
developed for research purposes, only a few have been developed and studied for their reliabil-
ity and applicability in routine individual management [48–50]. The main challenge in devel-
oping such assays is that HIV-1 sequence variability at and surrounding each DRM
complicates the hybridization steps required for mutation detection. Overall 42 codons at posi-
tions 65, 103, 106, 181, 184, and 190 occur in 1% or more sequences of the seven most common
subtypes (A, B, C, D, G, CRF01_AE, and CRF02_AG). Thirteen of these 42 codons encode the
six major DRMs proposed in this manuscript [51].

The sequence variability surrounding each drug-resistance position may present a more for-
midable challenge than the variability at the codons of interest. Flanking sequence variability
interfered with the clinical uptake of two previously developed hybridization-based assays, the
Affymetrix GeneChip HIV PRT 440 and the Innogenetics INNO-LiPA HIV-1 RT assays [52,
53]. It has also influenced the design of newer point mutation assays that are currently being
developed for clinical use in LMICs [48–50]. S8 and S9 Tables indicate the extent of this vari-
ability at and surrounding codon 103 for sequences from a combination of 26,358 ARV-naïve
and ARV-experienced individuals in six LMIC regions obtained from HIVDB [51]. It is beyond
the scope of this manuscript, however, to describe the various strategies being used to maxi-
mize the stringency for DRM discrimination while accommodating for one or more flanking
sequence mismatches.

Evolution of ARV treatment strategies
The extent to which ATV/r will be used for second-line therapy and the potential availability of
DRV/r and the integrase strand transfer inhibitors (INSTIs) are key areas of uncertainty.
Although LPV/r and ATV/r-containing regimens are equally effective for initial ART [54, 55],
ATV/r-containing regimens may be less efficacious for second-line therapy. ATV/r has a lower
genetic barrier to resistance than LPV/r and ATV/r monotherapy has been less effective than
LPV/r for regimen simplification [56–58] suggesting that ATV/r may be less effective than
LPV/r in treating individuals with extensive NRTI resistance. Therefore, the extent of NRTI
resistance following initial therapy may have greater implications for the use of ATV/r- than
for LPV/r-containing second-line regimens.

However, if ATV/r-containing second-line regimens prove effective, their use would have
favorable implications for both POC testing and third-line treatment. I50L and N88S are the
most commonly occurring major DRMs in PI-naïve individuals receiving ATV/r. Identifying
clinically relevant ATV resistance would therefore be simpler than identifying the more complex
patterns of DRMs associated with LPV resistance. In addition, most individuals with VF on a
second-line ATV/r-containing regimen are expected to have viruses that are fully susceptible to
LPV and DRVmaking it possible to create a highly effective third-line regimen using these PIs.

Although the NNRTI rilpivirine (RPV) has recently been approved in upper-income coun-
tries for use in a fixed-dose combination with TDF and FTC, further studies would be necessary
before it could be considered a standard first-line treatment option in LMICs. In particular,
RPV is approved only for individuals with plasma HIV-1 RNA levels below 100,000 copies//ml.
A POC test for RPV resistance would also require a different set of NNRTI-associated DRMs
than those described here because K101E, E138K, and Y181C appear to be the DRMs occurring
most commonly in individuals receiving first-line RPV-containing regimens [19, 59].

It is difficult to predict how the introduction of INSTIs will influence the development of
POC genotypic resistance testing strategies because such strategies depend on which INSTIs
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will be introduced and on whether they will be used for first-, second- or third-line therapy
[60]. However, if INSTIs will be used beyond the first line of therapy and in combination with
NRTIs, it may become important to identify the NRTI DRMs most likely to increase the risk of
VF on an NRTI/INSTI-containing regimen.

Ongoing population-level surveillance of both ARV-naïve and experienced individuals using
standard genotypic resistance testing will be important to detect changing patterns in the molec-
ular epidemiology of HIV-1 drug resistance resulting either from changing ARV selection pres-
sures and/or transmission dynamics. The cost-effectiveness of POC genotypic resistance testing
will depend on the evolving molecular epidemiology of ADR and TDR, the clinical uptake of
POC virus load testing, and the number of available regional treatment options. Although the
technology required to reliably detect HIV-1 DRMs on a POC platform is challenging, it would
have widespread applications for the POC detection of critical drug-resistance, vaccine-escape,
and gain-of-function mutations in other rapidly evolving epidemic viruses.
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