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Abstract1

The Katanga region in the Democratic Republic of Congo (DRC) has been struck by2

repeated epidemics of measles, with large outbreaks occurring in 2010–13 and 2015.3

In many of the affected health zones, reactive mass vaccination campaigns were4

conducted in response to the outbreaks. Here, we attempted to determine how ef-5

fective the vaccination campaigns in 2015 were in curtailing the ongoing outbreak.6

We further sought to establish whether the risk of large measles outbreaks in differ-7

ent health zones could have been determined in advance to help prioritise areas for8

vaccination campaign and speed up the response. In doing so, we first attempted to9

identify factors that could have been used in 2015 to predict in which health zones10

the greatest outbreaks would occur. Administrative vaccination coverage was not11

a good predictor of the size of outbreaks in different health zones. Vaccination cov-12

erage derived from surveys, on the other hand, appeared to give more reliable es-13

timates of health zones of low vaccination coverage and, consequently, large out-14

breaks. On a coarser geographical scale, the provinces most affected in 2015 could15

be predicted from the outbreak sizes in 2010–13. This, combined with the fact that16

the vast majority of reported cases were in under-5 year olds, would suggest that17

there are systematic issues of undervaccination. If this was to continue, outbreaks18

would be expected to continue to occur in the affected health zones at regular inter-19

vals, mostly concentrated in under-5 year olds. We further used amodel of measles20

transmission to estimate the impact of the vaccination campaigns, by first fitting a21

model to the data including the campaigns and then re-running this without vacci-22
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nation. We estimated the reactive campaigns to have reduced the size of the overall23

outbreak by approximately 21,000 (IQR: 16,000–27,000; 95% CI: 8300–38,000) cases.24

There was considerable heterogeneity in the impact of campaigns, with campaigns25

started earlier after the start of an outbreak being more impactful. Taken together,26

these findings suggest that while a strong routine vaccination regime remains the27

most effective means of measles control, it might be possible to improve the effec-28

tiveness of reactive campaigns by considering predictive factors to trigger a more29

targeted vaccination response.30

Introduction31

There have been repeated outbreaks of measles in the Democratic Republic of32

Congo (DRC). The Katanga region (formerly known as Katanga province) is in the33

southeast of the country bordering Zambia and comprises the provinces of Haut-34

Katanga, Haut-Lomami, Lualaba and Tanganyika. It has experienced large periodic35

measles outbreaks, such as in 2006–07, 2010–13 (Grout et al., 2013; Mancini et al.,36

2014). In response to these, reactive mass vaccination campaigns have been con-37

ducted to protect those assumed to be at risk both within the outbreak area and38

beyond.39

Standard measles epidemic responses include reinforcing measles surveillance40

in affected areas, providing free care to reduce measles mortality, and reactive vac-41

cination campaigns in order to control measles transmission. In collaboration with42

the World Health Organization (WHO) Regional Office for Africa (AFRO) and the43

United Nations Children’s Fund (UNICEF), Médecins Sans Frontières (MSF) sup-44

ported the Ministry of Health to respond to various measles outbreaks including45

two major measles outbreaks in the Katanga region. Firstly, in 2010–13, a measles46

epidemic was reportedwith over 96,000 suspected cases reported, 77% of which oc-47

curred in children under 5 years of age, and more than 1400 deaths (Mancini et al.,48

2014). In 2011, in response to the ongoing epidemic, MSF vaccinated more than 1.849

million children 26 of the 68 health zones in the Katanga region (Grout et al., 2013).50

Secondly, in February 2015, a new measles epidemic started in Katanga, DRC, last-51

ing the whole year and resulting in over 40,000 cases and more than 400 deaths52

in 2015 (UN Children’s Fund, 2015). MSF responded with the standard epidemic53

responses including a reactive vaccination campaign in order to stopmeasles trans-54

mission during epidemics, targeting more than 25 health zones.55

The time interval between the outbreak starting in different parts of Katanga56

and the vaccination response implemented varied. Previously, modelling studies57

in Niger have demonstrated that even late vaccination intervention in response to58

an outbreak could prevent a large number of cases, though early intervention will59

always have a larger impact (Ferrari et al., 2008; Grais et al., 2008; Dubray et al.,60

2006; Grais et al., 2006). However, this may be context-specific and vary with local61

epidemiology and outbreak patterns. The response to the Katanga outbreak pro-62

vides an opportunity to retrospectively study the effectiveness of the campaigns63

conducted in mitigating excess morbidity. More generally, important lessons could64

be learned about the relationship between response times and effectiveness of cam-65
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paigns, and how campaign targets could be selected in the future to ensure greatest66

impact.67

We studied the 2015 measles outbreak and responsive mass vaccination cam-68

paigns conducted as part of the standard epidemic response to assess whether the69

most-affected areas could have been predicted from information on previous out-70

breaks and administrative or otherwise estimated vaccination coverage. We further71

investigated the outbreak in several health zones using a mathematical model of72

measles transmission, to quantify the impact of vaccination campaigns that were73

conducted in those areas.74

Methods75

Data sources and cleaning76

Suspected measles cases (WHO definition) from 2010–16 were collated from the in-77

tegrated disease surveillance (IDS) system, described inMancini et al. (2014). These78

data are split into age groups 1-4 years and 5 years and over, at the level of health79

zones. The database did not contain any information on cases under the age of 180

year.81

Administrative coverage data from 2009-16 collected by the Ministry of Health82

was available as the number of doses administered per week was collected at the83

level of health zones, separated into age groups 9-11 months and 12-23 months.84

Population denominators were extracted from the coverage data. Since the last85

census in DRC prior to this study had been done in 1981, these numbers are subject86

to considerable uncertainty.87

We further used vaccination coverage estimates from a previous study by Taka-88

hashi et al. (2017). These used data collected as part of the Demographic andHealth89

Survey (DHS) in 2013–14, extrapolated from geo-located information on children’s90

vaccination status from vaccine cards and parental recall. We averaged the esti-91

mates by month of age to arrive at the proportion of under-5 year olds that were92

unvaccinated, that is had received no dose of measles-containing vaccine.93

Information on reactive mass vaccination campaigns conducted in 2015 was ex-94

tracted from MSF reports. The total number of vaccine doses administered was95

collated at the level of health zones, and at various temporal resolutions from days96

to a single number of doses delivered for a whole campaign.97

Factors that could predict outbreak size98

We tested the predictability of outbreaks from demographic factors and outbreak99

and vaccination history in a negative binomial Generalized Linear Model with log-100

arithmic link. Robust standard errors and p-values were calculated using the sand-101

wich R package (Zeileis, 2004; Zeileis, 2006). The number of suspected cases re-102

3

 .CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.was not peer-reviewed)

(whichThe copyright holder for this preprint  . http://dx.doi.org/10.1101/19003434doi: medRxiv preprint first posted online Aug. 17, 2019 ; 

http://dx.doi.org/10.1101/19003434
http://creativecommons.org/licenses/by/4.0/


ported during the 2015 outbreak at the health zone level wasmodelled as a function103

of health zone population size, the number of cases in the 2010–13 outbreak, MoH104

administrative and estimated vaccination coverage.105

Modelling measles with mass vaccination campaigns106

We modelled measles transmission at the level of health zones using a stochastic107

transmission model with a fixed time step of 2 weeks, corresponding to the gen-108

eration time of measles (Bjørnstad et al., 2002). At each time step t, the number of109

new infections in health zone i, Iitwas drawn from a negative binomial distribution110

with mean λitSi(t−1) and shape m, allowing for overdispersion of transmission, or111

superspreading (Lloyd-Smith et al., 2005):112

Iit ∼ NB(λitSi(t−1),m)

where Si(t−1) and Ii(t−1) are the number of people susceptible and infected, re-113

spectively, at time t− 1, and λit is the force of infection experienced by susceptibles114

in health zone i at time t:115

λit = R0

Ii(t−1)

Ni

where Ni is the population size of health zone i, R0 is the basic reproduction116

number.117

When a mass vaccination campaign was conducted, the number of susceptible118

people immunised was calculated by multiplying the number of doses adminis-119

tered with the proportion of the population still susceptible Sit/Ni, and a campaign120

efficiency factor ei, estimated as part of the inference procedure described below.121

This factor comprises both vaccine efficacy and the efficiency in targeting suscep-122

tible children, which were not identifiable separately. With a perfect vaccine and123

random distribution, this would take a value of 1. If vaccines were preferentially124

given to susceptibles, it would take values of greater than 1 (subject to vaccine ef-125

ficacy). If vaccines were preferentially given to already immune children, it would126

take values of less than 1.127

During a two-week span, half of vaccinationsweremodelled to be administered128

before transmission occurred and half afterwards. While the measles vaccine takes129

2 weeks to come into effect, it provides potentially high level of protection from 72130

hours after administration (Barrabeig et al., 2011; Kutty et al., 2013; National Health131

Service, 2017). We therefore assumed that vaccination starts to fully immunise a132

child instantaneously.133

For the counterfactual scenarios of how the outbreakswould have evolvedwith-134

out a reactive mass vaccination, we simulated the model from the time of the mass135

vaccination campaigns, but without reducing the number of susceptibles as a con-136

sequence of vaccination. We then drew samples from the joint distribution of tra-137

jectories and observations, to obtain alternative trajectories of observed cases. To138
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evaluate the impact of the campaigns, we calculated the reduction in the number of139

cases observed in each of the trajectories. If this yielded a negative difference (i.e., if140

random sampling yielded alternative trajectorieswithmore cases than the observed141

ones), we treated the impact as 0 (i.e., same number of cases in both scenarios).142

Selection of health zones for fitting and estimating populations143

The health zones selected for the dynamic model were ones that reported more144

than 10 cases in at least one week in 2015 and had a reactive mass vaccination cam-145

paign with the number of doses delivered and results from a follow-up coverage146

survey available. A total of eight health zones were modelled, including the one147

that saw most cases (Malemba-Nkulu, 8856 reported cases) and 7 of the 13 health148

zones with most cases in 2015: Ankoro (3910), Kinkondja (2773), Mukanga (2723),149

Bukama (2632), Songa (928) and Kabalo (904).150

Since a large proportion of cases was found in children (77% in 1-to-5 year olds,151

with no further age-breakdown available), and none of the vaccination campaigns152

targeted over-15 year olds, we modelled measles transmission to be occurring ex-153

clusively in under-5 year olds. The relevant population sizes were estimated as the154

number of doses administered in the vaccination campaigns divided by the cover-155

age estimated from concurrent vaccination surveys. Where vaccination campaigns156

were limited to under-5 or under-10 year olds, we estimated the total population157

size under 15 as 2.72 or 1.39 times the estimated population size, respectively, based158

onmultipliers used for estimating the sizes of age groups in the administrative cov-159

erage data provided.160

Model fitting and counterfactual scenarios161

The model was fitted simultaneously to the eight selected health zones. The likeli-162

hood of observing bi-weekly incidence Dit in health zone i at time t was taken to163

follow a negative binomial distribution with fixed overdispersion ϕ.164

Dit ∼ NB(ρIit + µ, ϕ)

where ρ is the proportion of cases that is reported, $µ is the rate of background165

reporting of measles, either due to cases that were not part of the epidemic or mis-166

classification, for example of rubella cases, and ϕ is the reporting overdispersion.167

The value of the basic reproduction numberR0, the efficacy of mass vaccination168

ei, mean reporting rate ρ, background reporting rate m, observation overdisper-169

sions, the proportion immune ri0 in health zone I and the mean number of individ-170

uals infectious Ii0 at the first data point with at least 10 cases in health zone i (taken171

to be the start of the time series), were all estimated as part of the inference proce-172

dure, as well as likely trajectories of the state variables. The reporting rate ρi and173

initial number infectious Ii0 was allowed to vary between health zones. The prior174

distribution on the mean reporting rate was weakly informed by a coverage survey175
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that was conducted in Kabalo. The initial proportion immune ri0 was estimated176

with a mean and lower bound given by the vaccination coverage per health zone177

vi estimated in (Takahashi et al., 2017). Informed or regularising prior distributions178

of the parameters to be estimated are shown in Table 1.179

Table 1: Prior distributions of parameters used in the transmission model. The distribu-
tion of the basic reproduction number was truncated at a lower bound of 0. The propotion
initially immune was truncated to be between vi and 1. The mean and actual proportions
reported were truncated to be between 0 and 1. The number initially infectious were truncte-
dat a lower bound of 0.

Parameter Symbol Prior distribution Source
Basic reproduction number R0 Gaussian(15, 5) Anderson and May (1991)
Overdispersion of transmission m Gamma(1, 0.1) n/a
Efficacy of campaigns ei Gaussian(1, 1) n/a
Background reporting µ Gamma(1,1) n/a
Proportion initially immune r0i Gaussian(vi, 1) Takahashi et al. (2017)
Mean proportion reported ρ Gaussian(0.059, 0.009) Médecins Sans Frontières (2015)
Proportion reported ρi Gaussian(ρ, 0.1) n/a
Mean initially infectious I0 Gamma(2, 5) n/a
Number initially infectious I0i Gamma

(
I0
r0i

,
√

I0
r0i

)
n/a

Overdispersion of reporting ϕ Gamma(1, 0.1) n/a

The model was fitted to the data using a particle filter in combination with180

Metropolis-Hastings Markov chain Monte Carlo (pMCMC) with the libbi software181

library (Murray, 2013) as implemented in the RBi package using the statistical soft-182

ware R (Jacob and Funk, 2019; R Core Team, 2017). The number of particles and183

proposal distribution was adapted using the RBi.helpers package (Funk, 2019), be-184

fore the pMCMC sampler was run to generate 4096 samples after thinning, with185

262,144 particles. The inference pipeline was run on an Nvidia Tesla P100 16GB186

NVLink GPU.187

Results188

Outbreak size189

In total, 40,562 cases and 485 deaths were reported in the Katanga region over190

the course of the year (case-fatality ratio: 1.2%). The majority of cases were re-191

ported from Haut-Lomami (23,984, 59%) and Tanganyika (12,110, 30%) provinces,192

with the outbreak in Tanganyika peaking significantly later than the one in Haut-193

Lomami (Fig. 2). Of the 68 health zones, 16 reported over 90% of cases (Fig. 1).194
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Figure 1: Number of cases by health zone in the Katanga region, 2015.
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Figure 2: Number of cases by age group and province in Katanga, 2015.
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Predictability of outbreak size195

There was a positive correlation between reported incidence in the 2010–13 out-196

break and the 2015 outbreak (Pearson’s r=0.31, p=0.01, Fig. 3). All the health zones197

with more than 10 cases per 1000 in 2015 (Malemba-Nkulu, Kinkondja, Manono,198

Ankoro, Lwamba, Mitwaba, Mukanga, Bukama) had also reported more than 5199

cases per 1000 in 2010–13.200
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Figure 3: Incidence (number of cases divided by estimated population size) in 2010–13 vs
2015. Health zones with more than 5 cases per 1000 in 2015 are indicated in black, and
other health zones with more than 10 cases per 1000 in 2010–13 in red.

Further, there was a positive correlation of reported incidence in 2015 and ad-201

ministrative vaccination coverage, and a negative correlation with coverage as es-202

timated from DHS data (Fig. 4).203

Combining these factors and population size in a regression model confirms204

these correlations, with coefficients corresponding to the number of cases in 2010–13205

and vaccination coverage estimated by DHS as strongest predictors of the number206

of cases that occurred in 2015 (Table 2). Population size and routine vaccination207

coverage asmeasured by the EPI programme did not have a strong influence on the208

number of cases in 2015. Correlation between model predictions and true number209

of cases was 0.3 (95% CI 0.1-0.5, p=0.01, Fig. 5).210

To further investigate the relationships underlying the results, we tested an ad-211

ditional model variant, where we distinguished the four provinces comprising the212

Katanga region in the model, to determine whether effects were being identified at213
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Figure 4: Vaccination coverage versus reported incidence (number of cases divided by es-
timated population size) in 2015. Linear trends are indicated by blue lines, with 95% con-
fidence intervals indicated in grey. A) Mean vaccination coverage in 2010–15 as measured
by the EPI programme. B) Vaccination coverage estimated from DHS data.

Table 2: Regression coefficients for model of case numbers in 2015, with lower and upper
95% confidence interval limits.

Coefficient Estimate p-value Lower limit Upper limit
(Intercept) 5.7 <0.001 5.4 6.1
Population size 0.1 0.8 -0.4 0.6
Number of cases 2010–13 0.8 <0.001 0.2 1.3
Mean EPI coverage 2010–15 0.3 0.09 -0.1 0.7
DHS coverage estimate -1.3 <0.001 -1.8 -0.9
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the fine level of the health zone or the coarser province level. In that case, province214

as a categorical explanatory variable in the regression replaced some of the predic-215

tive value both of the number of cases in 2010–13 (regression coefficient 0.4, p=0.05)216

and the coverage estimate from DHS data (-1.1, p<0.001), but both retained predic-217

tive value, the coverage estimate strongly so. This suggests that some predictive218

value of case numbers in 2010–13, and strong predictive value of the coverage esti-219

mate was retained at the lower level of the health zone.220
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Figure 5: Predictions from the regression model vs. true number of cases. As in Fig. 3,
health zones with more than 5 cases per 1000 in 2015 are indicated in black, and other
health zones with more than 10 cases per 1000 in 2010–13 in red.

The impact of mass vaccination campaigns221

To investigate the impact of the mass vaccination campaign in more detail, we fit-222

ted a dynamic model to the case trajectories in 8 health zones (Fig. 6). We esti-223

mated a basic reproduction number of 4.3 (mean; interquartile range, IQR: 4.0–4.5)224

and an average reporting rate of 24% (IQR: 19%-29%), corresponding to a total of225

77,000 (IQR: 73,000–81,000; 95% CI: 66,000–91,000) estimated cases from 19,079 re-226

ported cases in the 8 health zones. On average, 55% (IQR: 49%-62%) of under-5 year227

olds were estimated to have been immune before the outbreak. The estimated cam-228

paign efficacy factor ranged from 0.21 (IQR: 0.09–0.31) in Kinkondja to 0.59 (IQR:229

0.33–0.83) in Ankoro.230

In total, we estimate that 21,000 (IQR: 16,000–27,000; 95% CI: 8300–38,000) cases231

were averted by the vaccination campaigns in the seven health zones analysed, cor-232

responding to relative reduction in case load of 21% (IQR: 17%–25%, 95% CI: 9.3%–233

34%). Of the approximately 250,000 doses delivered to under-5 year olds in the234

8 health zones, we estimated 22,000 (IQR: 17,000–26,000, 95% CI: 11,000–37,000) or235

9.2% (IQR: 7.2%–11%, 95%CI: 4.5%–15%) of administered doseswent to susceptible236

children.237

There was heterogeneity in impact between health zones. The greatest abso-238
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Table 3: Summary of posterior estimates.

Parameter Symbol Posterior mean (IQR)
Basic reproduction number R0 4.3 (4.0–4.5)
Overdispersion of transmission m 0.17 (0.14–0.2)
Efficacy of campaigns (mean) ei 0.34 (0.14–0.48)
Background reporting µ 1.4 (1.0–1.7)
Proportion initially immune (mean) r0i 0.55 (0.49–0.62)
Number initially infectious (mean) I0i 66 (46–78)
Proportion of cases reported (mean) ρi 0.24 (0.19–0.29)
Overdispersion of reporting ϕ 0.044 (0.022–0.061)

lute impact achieved by a mass vaccination campaign in the health zones investi-239

gated was in Malemba-Nkulu with 6800 (IQR: 4000–9100; 95% CI: 0–17,000) cases240

averted with 26,208 doses, while the greatest relative impact was in Kabalo with241

a 33% (IQR: 17%–54%; 95% CI: 0%–73%) reduction in case load from an estimated242

20,727 doses (Table 4). On the other hand, only 230 (IQR: 0–810; 95% CI: 0–2400) or243

2.4% (IQR: 0%–11%; 95% CI: 0%–29%) of cases were estimated to have been averted244

in Bukama from an estimate 31,400 doses. Speed of implementation of the mass245

vaccination campaign (or shorter delay to implementation) was highly correlated246

with a greater relative reduction of cases (Pearson’s p = -0.85, p=0.008).247

Table 4: Absolute and relative impact of mass vaccination campaigns in different health
zones. Estimates shown are posterior means. The delay shown in the last column is the
number of weeks between the start of the outbreak (end of the first two-week period with
more than 10 cases) and the beginning of the vaccination campaign.

Doses Cases Relative Delay
Health zone (est.) averted (IQR, 95% CI) reduction (IQR, 95% CI) (weeks)
Ankoro 26,199 4800 (2200–7300, 0–12,000) 24% (13%–37%,0%–55%) 11
Bukama 34,100 230 (0–810, 0–2400) 2.4% (0%–11%,0%–29%) 25
Kabalo 20,727 3000 (1000–4700, 0–9100) 33% (17%–54%,0%–73%) 13
Kinkondja 20,792 510 (0–970, 0–2800) 5.5% (0%–12%,0%–29%) 20
Lwamba 44,148 3400 (870–5400, 0–12,000) 21% (6.7%–35%,0%–61%) 14
Malemba-Nkulu 46,330 6800 (4000–9100, 0–17,000) 23% (16%–31%,0%–47%) 14
Mukanga 30,133 2200 (670–3500, 0–6800) 15% (5.7%–25%,0%–44%) 17
Songa 19,660 970 (240–1500, 0–3300) 19% (6.2%–32%,0%–54%) 11

Discussion248

In spite of repeated strategic and reactive vaccination campaigns, largemeasles out-249

breaks continue to occur in Katanga, DRC, causing significant morbidity and mor-250

tality. Strategies to mitigate the burden of measles are urgently needed. Here we251

conducted both predictive and retrospective modelling of the measles outbreaks in252

Katanga in 2015, with the aim to evaluate the impact of the vaccination response as253

well as potential for improvement.254

The predictability of outbreaks is related to the quality of the available data. We255

found little relationship between reported administrative vaccination coverage and256

observed incidence. In fact, therewas a small positive correlation, that ismore cases257
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occur where vaccination uptake as indicated by the EPI programme is higher. This258

could be because high routine vaccination rates might be an indicator of surveil-259

lance quality and therefore case reporting. At the same time, Strategic Immunisa-260

tion Activities were conducted across Katanga after the 2011 outbreak (Scobie et al.,261

2015). We did not have access to any details of these campaigns, which may have262

been targeted at areaswith low reported vaccination rates, thus raising immunity in263

those health zones. Not all of the suspected cases included in this study may have264

been measles and instead have been misdiagnoses due to rubella or other causes of265

rash (Graaf, 2015). While we included a parameter for misclassification in the mod-266

elling analysis, this is difficult to identify and may be an underestimate. Lastly,267

there is uncertainty around the population estimates used as denominator when268

estimating coverage, as high rates of migration and urban growth make existing269

data quickly outdated.270

Vaccination rates as estimated from cluster surveys as part of the DHS pro-271

gramme, on the other hand, were well correlated with case data, with higher vac-272

cination rates corresponding to lower case burden. These estimates encompass273

all vaccination activities and not just routine immunisation, and they do not suf-274

fer from denominator issues caused by uncertainty in the population sizes within275

health zones.276

Reconstructing the outbreak with a mathematical model of the case trajectories277

suggested that reactivemass vaccination campaigns reduced the case load substan-278

tially, and more so the earlier it was implemented. We estimated that tens of thou-279

sands of susceptibles were immunised during those campaigns and, consequently,280

tens of thousands of cases averted in under-5 year olds. While the estimated over-281

all proportion of doses that went to susceptibles may appear low at approximately282

10%, this must be seen in the context of conducting vaccination campaigns during283

ongoing outbreaks, where part of the population may already have been infected284

and thus naturally immunised. In all health zones, we estimated that vaccines were285

preferentially given to immune children, who may have been immunised through286

routine vaccination, been targeted in previous campaigns, or infected and acquired287

natural immunity during the ongoing or previous outbreaks. At the same time, the288

estimated 21,000 cases averted correspond to a reduction in burden of over 20%. In289

the health zonesmodelled, the case-fatality ratio in the reported datawas 1.2%, sug-290

gesting that around a hundred infant lives were probably saved by the campaigns.291

Our transmission model suffered from several limitations. We did not have ac-292

cess to an age breakdown of cases older than 5 years, and information on under-1293

year olds was missing completely. Because of this, we only modelled transmission294

in under-5 year olds. At 77% of reported cases, it seems safe to assume that trans-295

mission in under-5 year olds was driving the outbreaks. The estimated basic re-296

production number of 4.3 (IQR: 4.0–4.5) is small in comparison with other settings,297

possibly because transmission does not occur in school-like settings with closemix-298

ing of large numbers of children, but rather households and communities affecting299

children before they reach school age.300

The estimated impact of the campaignsmight have been greater if cases averted301

in over 5-year olds had been taken into account. We further ignored any spatial302
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progression of the outbreak or connectivity between health zones and modelled303

each area in isolation. In reality, mass vaccination campaigns that reduced cases in304

one area may well have prevented subsequent cases in nearby areas in other health305

zones. Lastly, we assumed constant reporting rates. If, on the other hand, reporting306

quality changes between regions or over time, it would affect our fits which would307

interpret these changes as changes in transmission rather than reporting.308

In spite of enormous efforts, measles is proving difficult to control in Katanga.309

On the 10th June 2019, theDRCMinistry ofHealth officially declared a newmeasles310

outbreak in 23 out of the 26 provinces of DRC, with initial cases for this outbreak311

reported in late 2018. This new measles outbreak coincided with an ongoing Ebola312

outbreak in the North Kivu and Ituri provinces of DRCwhich had begun in August313

2018. There have been suggestions that the diversion of resources and attention314

towards the Ebola response may have reduced the healthcare capacity required to315

respond to a surge in measles cases (Arie, 2019). Although at the time of writing,316

the health zonesmost affected by themeasles outbreakwere outside the area where317

Ebola was mostly concentrated, it has been shown during the 2013–16 outbreak in318

West Africa that reduced vaccination services as a result of an Ebola outbreak can319

have a severe impact on measles circulation (Takahashi et al., 2015; Colavita et al.,320

2017; Wesseh et al., 2017).321

The ability to partly predict the case load in 2015 from outbreaks in 2010–13 at322

the province level suggests that there might be underlying problems in the provi-323

sion of routine immunisation services that did not change in the intervening time.324

At the end of outbreaks as big as the ones occurring in Katanga, not many children325

are left susceptible, whether a mass vaccination campaign has been conducted or326

not. The fact that another big outbreak could happen so soon after the last suggests327

a rapid increase in susceptibles that have not been served by the routine vaccina-328

tion programme, and strengthening this should be a priority. At the same time, it is329

clear that the mass vaccination campaigns only prevent part of the observed cases,330

partly because of unavoidable delays in confirming an outbreak and launching a331

campaign. Preventive strategies based on predictive models have a potential to332

have a much greater impact if they can prevent outbreaks altogether, but their use333

is based on the predictive potential of the models used. We found that vaccination334

estimates based on a spatial model applied previously to vaccination survey data335

was a good predictor of outbreak size at the relatively fine level of health zones.336

There is enormous promise in using such estimates to guide strategic immunisa-337

tion activities and close any existing gaps in immunity. As has been proven many338

times over, it is only through strong and comprehensive routine vaccination, sup-339

plemented by strategic campaigns where necessary, that sustained measles control340

and, ultimately, elimination can be achieved.341

Ethics342

This research fulfilled the exemption criteria set by the MSF Ethics Review343

Board (ERB) for a posteriori analyses of routinely collected clinical data and thus344

did not require MSF ERB review.345

14

 .CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.was not peer-reviewed)

(whichThe copyright holder for this preprint  . http://dx.doi.org/10.1101/19003434doi: medRxiv preprint first posted online Aug. 17, 2019 ; 

http://dx.doi.org/10.1101/19003434
http://creativecommons.org/licenses/by/4.0/


Acknowledgements346

The authorswould like to thank colleagues from theDemocratic Republic of Congo,347

including Chefs de la Division Provinciale de la Santé from the following regions:348

Patrick M’piongo (Haut Lomami) , Gerard Mwabu Mbumbu (Haut Lualaba), Jerry349

KyunguKibanza (Tanganyika) and Jean-MarieKafwimbi (Katanga). In additionwe350

thank colleagues from MSF who shared their operational data and who facilitated351

sharing of historical data, especially Narcisse Mukembe and Florent Uzzeni (MSF352

Switzerland), Liliana Palacios (MSF Spain) and Axelle De La Motte (MSF France).353

Finally we like to acknowledge and thank Marion Dols (MSF Netherlands) for her354

earlier work on measles within MSF operations.355

References356

Anderson, R. M. and R. M. May (1991). Infectious Diseases of Humans: Dynamics and357

Control. Oxford University Press, Oxford.358

Arie, S. (2019). “Congo sees rise in deaths from malaria, measles, and cholera as359

Ebola outbreak swallows up resources”. BMJ. ISSN: 0959-8138.360

Barrabeig, I. et al. (2011). “Effectiveness of measles vaccination for control of ex-361

posed children”. The Pediatric infectious disease journal 1, 78–80.362

Bjørnstad, O. N., B. F. Finkenstädt, and B. T. Grenfell (May 2002). “Dynamics of363

measles epidemics: estimating scaling of transmission rates using a time series364

SIR model”. Ecol Monogr 2, 169–184. ISSN: 0012-9615.365

Colavita, F. et al. (June 2017). “Measles Cases during Ebola Outbreak, West Africa,366

2013–2016”. Emerging Infectious Diseases 6, 1035–1037.367

Dubray, C. et al. (2006). “Late vaccination reinforcement during ameasles epidemic368

in Niamey, Niger (2003–2004)”. Vaccine 18, 3984–3989.369

Ferrari, M. J. et al. (Feb. 2008). “The dynamics of measles in sub-Saharan Africa.”370

Nature 7179, 679–684.371

Funk, S. (2019). rbi.helpers: rbi helper functions. R package version 0.2.372

Graaf, P. de (May 2015). Measles in DRC, a review with recom-373

mendations for MSF. available online, https://code.msf.fr/users/a-374

blake/repos/katanga/raw/trunk/Coordo/workspace/Mesles%20DRC%20Pim%20de%20Graaf%20Long%20version.pdf.375

Grais, R. et al. (2006). “Exploring the time to intervene with a reactive mass vacci-376

nation campaign in measles epidemics”. Epidemiology & Infection 4, 845–849.377

Grais, R. et al. (2008). “Time is of the essence: exploring ameasles outbreak response378

vaccination in Niamey, Niger”. Journal of the Royal Society Interface 18, 67–74.379

Grout, L. et al. (2013). “Measles in Democratic Republic of Congo: an outbreak de-380

scription from Katanga, 2010–2011”. BMC Infect Dis 1, 232.381

Jacob, P. E. and S. Funk (2019). RBi: R interface to LibBi. R package version 0.10.0.382

Kutty, P. et al. (2013). “Measles”. In:Manual for the Surveillance of Vaccine-Preventable383

Diseases. Ed. by C. for Disease Control and Prevention.384

Lloyd-Smith, J. O. et al. (Nov. 2005). “Superspreading and the effect of individual385

variation on disease emergence.” Nature 7066, 355–359.386

Mancini, S. et al. (2014). “Description of a large measles epidemic in Democratic387

Republic of Congo, 2010–2013”. Confl Health 1, 9.388

15

 .CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.was not peer-reviewed)

(whichThe copyright holder for this preprint  . http://dx.doi.org/10.1101/19003434doi: medRxiv preprint first posted online Aug. 17, 2019 ; 

http://dx.doi.org/10.1101/19003434
http://creativecommons.org/licenses/by/4.0/


Médecins Sans Frontières (Nov. 2015). Enquete de mortalité rétrospective, de malnu-389

trition, de couverture vaccinale rougeole et de taux d’attaque rougeole pendant d’une390

épidémie: Zone de santé de Kabalo, district du Tanganyika, Province du Katanga, RD391

Congo.392

Murray, L. M. (June 2013). “Bayesian State-Space Modelling on High-Performance393

Hardware Using LibBi”.394

National Health Service (2017). MMR vaccine FAQs. c. Archived at395

http://www.webcitation.org/6vTus3JWa on Dec 5, 2017.396

RCore Team (2017).R: A Language and Environment for Statistical Computing. R Foun-397

dation for Statistical Computing. Vienna, Austria.398

Scobie, H. et al. (2015). “Antecedent causes of a measles resurgence in the Demo-399

cratic Republic of Congo”. Pan African Medical Journal.400

Takahashi, S. et al. (2015). “Reduced vaccination and the risk of measles and other401

childhood infections post-Ebola”. Science 6227, 1240–1242. ISSN: 0036-8075.402

Takahashi, S. et al. (2017). “The geography of measles vaccination in the African403

Great Lakes region”. Nature Communications.404

UN Children’s Fund (2015). In the Democratic Republic of Congo, a rush to contain405

measles. https://reliefweb.int/report/democratic-republic-congo/democratic-republic-406

congo-rush-contain-measles. Archived at http://www.webcitation.org/6wUTHvK4E407

on Jan 15, 2018.408

Wesseh, C. S. et al. (2017). “Did the Ebola outbreak disrupt immunisation services?409

A case study from Liberia”. Public Health Action 1, S82–S87.410

Zeileis, A. (2004). “Econometric Computing with HC and HAC Covariance Matrix411

Estimators”. Journal of Statistical Software 10, 1–17.412

— (2006). “Object-Oriented Computation of Sandwich Estimators”. Journal of Sta-413

tistical Software 9, 1–16.414

16

 .CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.was not peer-reviewed)

(whichThe copyright holder for this preprint  . http://dx.doi.org/10.1101/19003434doi: medRxiv preprint first posted online Aug. 17, 2019 ; 

http://dx.doi.org/10.1101/19003434
http://creativecommons.org/licenses/by/4.0/

