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Analysis of immunogenicity data is a critical component of vaccine development, providing a biological
basis to support any observed protection from vaccination. Conventional methods for analyzing immuno-
genicity data use either post-vaccination titer or change in titer, often defined as a binary variable using a
threshold. These methods are simple to implement but can be limited especially in populations experi-
encing natural exposure to the pathogen. A mixture model can overcome the limitations of the conven-
tional approaches by jointly modeling the probability of an immune response and the level of the
immune marker among those who respond. We apply a mixture model to analyze the immunogenicity
of an oral, pentavalent rotavirus vaccine in a cohort of children enrolled into a placebo-controlled vaccine
efficacy trial in Niger. Among children with undetectable immunoglobulin A (IgA) at baseline, vaccinated
children had 5.2-fold (95% credible interval (CrI) 3.7, 8.3) higher odds of having an IgA response than pla-
cebo children, but the mean log IgA among vaccinated responders was 0.9-log lower (95% CrI 0.6, 1.3)
than among placebo responders. This result implies that the IgA response generated by vaccination is
weaker than that generated by natural infection. Multivariate logistic regression of seroconversion
defined by � 3-fold rise in IgA similarly found increased seroconversion among vaccinated children,
but could not demonstrate lower IgA among those who seroresponded. In addition, we found that the
vaccine was less immunogenic among children with detectable IgA pre-vaccination, and that pre-
vaccination infant serum IgG and mother’s breast milk IgA modified the vaccine immunogenicity.
Increased maternal antibodies were associated with weaker IgA response in placebo and vaccinated chil-
dren, with the association being stronger among vaccinated children. The mixture model is a powerful
and flexible method for analyzing immunogenicity data and identifying modifiers of vaccine response
and independent predictors of immune response.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access articleunder the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Immunogenicity studies for vaccines are performed to test the
response of the immune system to vaccination. Immunogenicity
data on a relatively small number of participants can provide infor-
mation on whether a vaccine generates a response from the
immune system. Collection and analysis of immunogenicity data
is therefore a critical component of vaccine development, giving
a biological basis to support any observed protection against infec-
tion or disease.
Immune response to a vaccine is often measured using antigen-
specific immunoglobulin assays. The classical approach to assess-
ing immunogenicity compares the concentrations between groups
within a randomized trial, analysed as transformed continuous
outcomes (geometric mean titre (GMT) or rise in titre using a Wil-
coxon or similar non-parametric test [1]), or binary outcomes (se-
roconversion or seroresponse) using a specified fold rise in titre
(e.g. 3-fold rise) or a specified titre post-vaccination (e.g.
IgA � 20). Classical analysis of continuous GMTs cannot explicitly
account for individuals who have undetectable titre, and the stan-
dard statistical tests cannot be easily extended to perform multi-
variate analyses, in particular to control for pre-existing
antibodies. Multivariate analyses accounting for the full distribu-
tion of the antibody in question (e.g. non-normal distribution,
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samples below the limit of detection) are rare in the literature
[2–4]. Binary outcomes are problematic as defining seroconversion
with a crude cut-off fails to capture biological variability in anti-
body titres and assay variability that may be apparent when
exploring a continuous range in post-vaccination titres. The
thresholds chosen to determine seroconversion and seroresponse
have origins in the use of two-fold serial dilution, with a four-
fold increase taken as unlikely to be due to assay variability. Differ-
ent thresholds might be clinically relevant for different assays, but
identifying an optimal threshold is not commonly done [5]. Finally,
the presence of individuals with elevated titre at baseline compli-
cates the analysis and interpretation of GMT and seroconversion
[6]. For example, as the body is limited in how much antibody it
can produce, a higher baseline titre might lead to a lower rise in
titre for reasons that are unrelated to vaccine interference [7]. In
addition, studies that investigate only a small number of unique
dilutions may have limited resolution to detect fold changes in
titre if baseline titres are elevated.

To overcome some of these limitations, a mixture model has
been proposed as a method to analyse immunogenicity data
[8–10]. A mixture model describes a population that is composed
of distinct groups, in which the response variable’s probability dis-
tribution is dependent on membership in one of these groups.
When analysing immunogenicity data, we can jointly model the
probability of being a ‘‘seroresponder” vs. a ‘‘nonresponder” and
the level of seroresponse among seroresponders. There are several
advantages to this approach: it avoids reducing a continuous vari-
able to a binary variable, thereby using the full information con-
tained in the data; it allows us to avoid making arbitrary
assumptions about what constitutes a significant change in titre
and to include baseline titre in a natural way; it allows us to simul-
taneously examine the probability of having a seroresponse and
the level of the immune marker among seroresponders; and it
can be easily extended to perform a multivariate analysis. These
advantages could allow us to better explore immunogenic markers
of protection from disease that are not ‘‘all-or-nothing” in their
action, but rather confer higher levels of protection with higher
titre [11] or for which the titre value is informative beyond its posi-
tion relative to a threshold [12].

In this study we analyse immunogenicity data from a cohort of
children in Niger enrolled in a vaccine efficacy trial [13] using a
mixture model. We demonstrate the approach with this data set
because it is large, includes placebo and vaccinated participants,
and has data on maternal antibodies measured at baseline that
can be used to address a common question in rotavirus immunol-
ogy: that of whether maternal antibodies interfere with vaccine
response. We apply a mixture model to measurement of serum
IgA with several aims: to determine whether vaccination is associ-
ated with an increased IgA response compared to placebo; to iden-
tify predictors of IgA response that are independent of vaccination;
and to identify factors that modify the effectiveness of vaccination
in generating an IgA response. Finally, we consider what additional
information the mixture model can provide over a traditional
immunogenicity analysis.
2. Methods

2.1. Study population

Details of the study population have been published elsewhere
[13] In brief, healthy infants were enrolled in Maradi, Niger and
randomized in a 1:1 ratio to receive three doses of a heat-stable,
live, oral bovine rotavirus pentavalent vaccine (Rotasiil, Serum
Institute of India), or three doses of placebo at 6, 10 and 14 weeks
of age. The primary efficacy analysis included 3508 children. An
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immunogenicity sub-study was carried out among a subset of chil-
dren who received all three doses of vaccine or placebo per proto-
col (n = 1525) to assess differences in serum IgA following
administration of vaccine or placebo. Serum was collected from
infants in the immunogenicity sub-study pre-dose 1 (6–8 weeks
from birth, henceforth ‘‘baseline”) and 28 days post-dose 3 (18–
23 weeks from birth, henceforth ‘‘post-vaccination”) to measure
IgA response to the vaccine. Infant serum IgG and mother’s breast
milk IgA pre-dose 1 were also collected.

2.2. Outcome definition and assay description

The outcome of interest was log IgA titre at the post-vaccination
visit. An individual whose IgA titre fell below the lower limit of
detection (LOD) of 7.5 AU/ml was censored. Immunology analyses
were performed in Cincinnati Children’s Hospital Medical Center in
Cincinnati. Serum rotavirus IgA, serum rotavirus IgG, and breast
milk rotavirus-IgA were measured by Enzyme Immunoassay
(EIA): 96-well microtitre plates were coated with anti-rotavirus
IgG rabbit hyperimmune serum raised against a pool of Rotavirus
(strains SA-11, RV3, RV4, RV5, and ST3), and simian SA11-strain
Rotavirus added as antigen, as previously described [14]. IgA/IgG
was detected using peroxidase-conjugated secondary antibody fol-
lowed by orthophenyenediamine reaction to measure antibody
concentration (AU/mL).

2.3. Mixture model

For the mixture model, we assumed that the population com-
prised two unobserved groups defined by their post-vaccination
IgA response: those who truly had no exposure to rotavirus or
response to vaccination (‘‘non-response”), and those who had some
exposure and/or response (‘‘response”) [8]. Among responders, the
log IgA titre follows a gamma distribution, representing the
strength of response to a previous exposure. The response is cen-
sored below at the LOD.

We derive the likelihood of this model as follows. Let Y = log
(IgA) post-vaccination and Y0 = log(IgA) at baseline, and let the
mean response for a responder i be

E Yi½ � ¼ li ¼ Y0i þ
Xr

j¼1
cjXij:

mi represents the mean of a gamma distribution with shape
parameter r > 0, and the c parameters represent associations
between covariates Xij and change in log(IgA) from baseline. Being
a responder is determined by a Bernoulli distribution with proba-
bility pi, which links to a different set of covariates X’ij with a logis-
tic model

logitðpiÞ ¼
Xr

0

j¼1
bjX

0
ij:

Assuming that the population consists of n individuals with
IgA � LOD post-vaccination and m individuals with IgA < LOD
post-vaccination, the log likelihood of the model given the data is

l b; c;rð Þ ¼
Xn

i¼1
lnðpif xið ÞÞ þ

Xnþm

i¼nþ1
lnð½1� pi þ piF LODð Þ�Þ:

Parameter estimation was done by maximizing the log-
likelihood using Bayesian MCMC. Estimates are presented along-
side the 95% credible interval estimated from the posterior
likelihood.

Pre-dose 1 IgA is censored below the LOD, meaning that we do
not have full exposure information for such children. Therefore, a
value must be chosen for children with IgA < LOD, commonly set
to LOD, LOD/2, or LOD/

p
2. However, this substitution method

has been shown to lead to bias in the estimates of mean associa-
tions and standard errors [15]. We fit the mixture model separately
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to children with IgA < LOD and IgA � LOD at the baseline visit, so
that estimates of the association between baseline IgA and IgA
response in both groups are unbiased [15]. We refer to the two
groups as ‘‘baseline IgA-undetectable” and ‘‘baseline IgA-
detectable” respectively.
Table 1
Baseline characteristics of the study population by vaccine group, compared to
characteristics in the primary analysis cohort.

Characteristic Immunogenicity
study

BRV-PV Placebo

N 731 667
Age - weeks
At dose 1 6.5 ± 0.6 6.5 ± 0.6
At 28 days post-dose 3 18.7 ± 0.7 18.6 ± 0.7
Male sex - n(%) 358 (49.0) 345

(51.7)
Child serum IgA at baseline (log) 1.9 (1.4) 1.9 (1.4)
Child serum IgG at baseline (log) 5.7 (0.9) 5.7 (0.9)
Mother’s breastmilk IgA at baseline (log) 3.5 (1.2) 3.5 (1.2)
Oral polio vaccine administered within

7 days of baseline visit
239 (32.7) 222

(33.3)
2.4. Statistical analysis

We performed three analyses using the mixture model. We
applied the model to examine the effect of vaccination on IgA
response, including vaccination group as a covariate for both the
probability of being a responder and the strength of IgA response
among those who do respond. Then, we identified baseline vari-
ables that modified the association between vaccination and IgA
response separately among the baseline IgA-detectable and IgA-
undetectable groups. We added each baseline covariate and its
interaction with vaccination to the response odds and mean
response separately, and to both components in the same model.
Finally, we identified baseline variables that were associated with
IgA response independently of vaccination. To build this model, we
performed a univariate analysis for each covariate by including it
in the model in the IgA response odds component, in the IgA
response mean component, and in both. We then chose covariates
to be included in the multivariate model if the deviance informa-
tion criterion (DIC) was < 2 greater than the DIC of the null model.
We fit multivariate models including all combinations of chosen
covariates, and used DIC to compare these models. The fit of the
final models was assessed by comparing the predicted and
observed values of the following two quantities: proportion of chil-
dren who are below the LOD, and the mean log(IgA titre) among
children whose titre is above the LOD.

To compare the results of the mixture model with standard
approaches, we defined seroconversion as a 3-fold [16], 2-fold, or
4-fold rise in IgA from baseline to 18weeks, or IgA� 20 at 18 weeks
for those with IgA < 20 at baseline. We performed univariate and
multivariate logistic regression to assess the association between
baseline covariates and seroconversion and compared the results
with those of the mixture model.

We considered the following baseline variables: child serum IgA
at baseline, child serum IgG at baseline, mother’s breast milk IgA at
baseline, administration of oral polio vaccine within 7 days of the
baseline visit, child sex, mother’s age (quartiles), and mother’s
MUAC (quartiles). We performed a complete case analysis, exclud-
ing any children with missing data for any of these variables.

As the model presented above involves several assumptions, we
performed sensitivity analyses to address three of these assump-
tions: firstly, to allow more flexibility in the shape of the response
distribution, we modelled the distribution of IgA response among
responders with a lognormal and generalized gamma distribution.
The gamma and lognormal distributions are special cases of the
generalized gamma distribution [8]. Secondly, to assess the effect
of dividing the population in IgA-detectable and IgA-
undetectable, we combined the groups and imputed the value of
baseline IgA below the LOD using maximum likelihood estimation
[15]. Specifically, we assumed the log(IgA) at baseline was gamma-
distributed, estimated the shape and rate of the distribution, and
imputed the log(IgA) at baseline using a conditional expectation
formula [17]. Finally, we fitted the same models to the data assum-
ing that all children with IgA < 20 were seronegative, thus mod-
elling the probability of having IgA � 20 at 18 weeks, and the
IgA among the group who had a seroresponse. IgA � 20 has been
cited previously as a protective threshold [18], so the aim of this
sensitivity analysis was to explore whether defining ‘‘response”
using a possibly more biologically relevant threshold would
change the overall conclusions.
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3. Results

The study population for the immunogenicity sub-study con-
sisted of 1525 children enrolled from September 2015 through
February 2017. 1398 children had complete information for all
covariates considered in these models, and were thus included in
the analysis population. Table 1 displays the baseline characteris-
tics in the two groups.

Fig. 1 shows the distribution of log(IgA titre) for vaccinated (or-
ange) and placebo (blue) children at baseline (left) and post-
vaccination (right). 79% of children were IgA-undetectable at base-
line. Among children that were IgA-undetectable at baseline, 50.9%
had detectable IgA at post-vaccination, while among children that
were IgA-detectable at baseline, 84% had detectable IgA post-
vaccination.

3.1. Vaccine immunogenicity

The mixture model estimated the effect of vaccination on prob-
ability of response and the level of IgA response among responders.
Among children with undetectable IgA at baseline, vaccination was
associated with a 5.16-fold (95% credible interval (CrI) 3.67, 8.25)
change in the odds of being a responder compared to placebo,
and a 0.93-log decrease (95% CrI 0.59, 1.28) in mean log IgA among
those who did respond compared to placebo responders. In the
baseline IgA-detectable group, vaccination was associated with a
1.63-fold (95% CrI 0.86, 3.16) change in the odds of being a respon-
der compared to placebo, and a 0.53-log decrease (95% CrI 0.41,
0.65) in mean log IgA among those who did respond compared
to placebo responders. This implies that the serological profile of
IgA-detectable vaccinees is similar post-vaccination to that of
IgA-detectable non-vaccinees at the same time.

3.2. Modifiers of vaccine immunogenicity

We tested interaction terms between vaccination status and a
number of baseline covariates to identify factors that could modify
the ability of the vaccine to generate an IgA response. In both
groups there was a negative interaction between vaccination sta-
tus and baseline IgG. Specifically, the negative association between
IgG and seroresponse was stronger among vaccinated children
(Table 2). In addition, the negative association between breast milk
IgA and probability of a seroresponse was stronger among vacci-
nated children in the baseline IgA-undetectable group.

3.3. Independent predictors of seroresponse

In Table 3 we show the results of the best-fitting models, sepa-
rately for the baseline IgA-undetectable and IgA-detectable groups,
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Fig. 1. Distribution of log IgA titre pre-vaccination (left) and post-vaccination (right) for placebo (blue) and vaccinated (orange) children. The vertical line represents the LOD.
Density of log IgA titre distribution at each time point is shown in the inset graphs, for placebo (solid) and vaccinated (dotted) children.

Table 3
Predictors of IgA response at 18 weeks among children by IgA status pre-vaccination.

Model Variable Estimate (95% CrI Interval)

IgA <7.5 pre-
vaccination n = 1,086

IgA �7.5 pre-
vaccination n = 282

Response
odds

Group (vaccine
vs placebo)

1.72 (1.35, 2.24) 0.56 (�0.11, 1.28)

IgA at baseline – 0.38 (0.15, 0.63)
Breast milk IgA
at baseline

�0.22 (�0.38, �0.05) –

Response
mean

Group (vaccine
vs placebo)

�0.91 (�1.27, �0.58) �0.33 (�0.71, 0.04)

IgA at baseline – �0.5 (�0.62, �0.37)
IgG at baseline �0.37 (�0.53, -0.20) �0.23 (�0.46,

�0.005)
Breast milk IgA
at baseline

�0.25 (�0.41, �0.08) �0.18 (�0.36, 0.003)

Female sex – 0.51 (0.14, 0.89)

Table 2
Interaction terms between vaccination status and baseline covariates.

Baseline IgA status Variable Model Effect estimate among placebo (95% CrI) Effect estimate among vaccinated (95% CrI)

IgA <7.5 log(serum IgG) Response odds �0.22 (�0.01, �0.41) �0.51 (�0.24, �0.80)
log(breast milk IgA) Response odds �0.23 (�0.07, �0.41) �0.60 (�0.35, �0.92)

IgA � 7.5 log(serum IgG) Response mean 0.01 (�0.29, 0.29) �0.48 (�0.74, �0.20)
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that included vaccination as a covariate for response odds and
response mean. Effect estimates presented are log odds ratios for
the response odds model, and change in log titre for the response
mean model.

In the baseline IgA-undetectable group, IgG and breast milk IgA
at baseline were negatively associated with mean response among
those who responded, and breast milk IgA was negatively associ-
ated with probability of being a responder. For this model, the esti-
mated proportion of children with undetectable IgA was 0.489,
compared with an observed value of 0.487, while the estimated
vs. observed mean log(IgA) among children with detectable IgA
was 4.30 vs. 4.26.
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In the baseline IgA-detectable group, IgA at baseline was posi-
tively associated with probability of being a responder but also
negatively associated with mean change in IgA from baseline.
Finally, IgG and mother’s breast milk IgA were both negatively
associated with mean IgA among those who responded, and girls
had a stronger response than boys. For this model, the estimated
proportion of children with undetectable IgA was 0.165, compared
with an observed value of 0.163, while the estimated vs. observed
mean log(IgA) among children with detectable IgA was 5.09 vs.
5.16.

3.4. Sensitivity analyses

The final model using the gamma distribution had lower DIC
than the final models using the lognormal and generalized gamma
distribution, and the predictors of IgA response were broadly the
same across models (see Supplementary Material), implying that
results were robust to the choice of distribution and that the
gamma distribution was the best choice of distribution out of the
three.

Results for models assuming that children with IgA < 20 were
seronegative, and imputing the IgA for those with undetectable
IgA, are shown in the Supplementary Material.

3.5. Comparison with logistic regression for seroconversion

We performed univariate and multivariate logistic regression
for seroresponse as defined by a 3-fold rise in IgA from baseline
to post-vaccination. In the univariate analysis, vaccination was
associated with a 3.28-fold (95% confidence interval 2.56, 4.20)
change in the odds of seroresponse compared to placebo in the
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baseline IgA-undetectable group, and a 0.83-fold (95% confidence
interval 0.48, 1.41) change in the odds of seroresponse compared
to placebo in the baseline IgA-detectable group. As independent
predictors of IgA response, the logistic regression estimated a neg-
ative association between baseline IgG and breast milk IgA and
odds of seroresponse (see Supplementary Material). In the baseline
IgA-detectable group, IgA was significantly associated with
decreased odds of seroresponse, and IgG was marginally associated
with decreased odds of seroresponse. There was no significant
association between seroresponse and breast milk IgA or sex, and
results defining seroresponse as a 2-fold or 4-fold rise in IgA, or
as IgA � 20 post-vaccination among those with IgA < 20 pre-
vaccination were qualitatively similar (see Supplementary
Material).
4. Discussion

We present a novel statistical method for analysing immuno-
genicity data, applied to a Phase III randomized trial for a rotavirus
vaccine in Niger. Using a mixture model approach, we found that
the vaccine was effective in generating an IgA response and esti-
mate the magnitude of the effect among children with detectable
IgA after vaccination. Logistic regression, which does not account
for the full distribution of the titre, showed increased odds of sero-
conversion associated with vaccination but was unable to make
inferences about the average change in IgA among seroresponders.
In contrast, the mixture model, by jointly modelling the probability
of having detectable IgA and the level of IgA among responders,
showed that being vaccinated was associated with increased odds
of having detectable IgA following vaccination, but decreased IgA
among those who did respond. This result implies that the IgA
response induced by vaccination is weaker than that induced by
natural exposure to rotavirus. This may explain why the odds ratio
for seroresponse in the mixture model is higher than that for the
traditional logistic regression for seroconversion. In smaller stud-
ies, this phenomenon could limit the ability of a traditional
approach to detect the effect of vaccination on immune response.

In addition, we identified modifiers and predictors of the
immunogenic effect of the vaccine. In particular, the vaccine
appeared to be more immunogenic among children with unde-
tectable IgA pre-vaccination, and it was not clear that vaccinated
children detectable IgA pre-vaccination had higher IgA post-
vaccination than placebo children. Maternal antibodies were gen-
erally associated with lower odds of IgA response at 18 weeks,
and lower level of response among those who responded. For
IgG, this effect appeared to be stronger among vaccinated children,
suggesting that IgG interferes with vaccine-induced IgA response
more than IgA response induced by natural exposure.

These findings are in line with those from previous immuno-
genicity studies in low-income settings. Lee et al [19] found that
children with high levels of serum IgG had lower rates of serocon-
version. Several other studies have demonstrated evidence for
interference of maternal antibodies on vaccine response: transpla-
cental IgG inhibited IgA response among vaccinees but not place-
bos [20]; higher titres of breast milk IgA was associated with
lower rate of seroconversion following vaccination in mother-
child pairs in Lusaka [21]; and pre-vaccination IgA and IgG were
negatively associated with IgA seroconversion among vaccinated
children in Soweto, South Africa [22]. To add to these studies, we
have demonstrated that the effect of IgG on seroconversion is
stronger among vaccinated children, suggesting that IgG interferes
with vaccine response more than response to natural exposures.

Weaker immune response among vaccinees with detectable IgA
after vaccination has been observed for influenza [23,24]. The
implications of this finding depend on the relationship between
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serum IgA and protection from infection. IgA has generally been
accepted as a non-mechanistic correlate of protection (i.e. an
immune marker that is correlated with but does not cause protec-
tion from infection) [16,25,26]. Recent results from lower-income
settings have showed low correlation between changes in IgA fol-
lowing vaccination and vaccine efficacy [19,27]. If the value of IgA
titre is important beyond whether it crosses a certain threshold,
the weaker IgA response among vaccinated responders is indica-
tive of weaker immunogenicity of the vaccine compared to natural
infection. This could explain the reduced vaccine efficacy seen in
the second year of life in lower-income settings: while the vaccine
provides protection against infection relative to children with no
previous infections, once placebo children have acquired protec-
tion from natural infection the difference in hazard between the
two groups is small.

There are several limitations to the study. The vaccine group is
receiving a combination of vaccine-derived and natural exposures
to rotavirus. This suggests that any interaction terms between the
two groups underestimate the true interaction between vaccine
and natural exposures. Therefore, we may have missed some other
interactions. Small sample size of children with detectable IgA at
baseline may have affected our ability to discern associations
between baseline covariates and IgA response in this group. In
addition, our statistical model does not account for the possibility
of false positives, assuming instead that all samples with IgA � 7.5
truly had an IgA response. However, the results of the sensitivity
analysis in which we considered IgA � 20 as the cut-off for serore-
sponse were similar, implying that our results were robust to mea-
surement error in true non-responders.

In summary, we have introduced a flexible and powerful statis-
tical method that can be used to approach other analyses of
immune response following vaccination.
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