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Abstract. 

In the context of malaria elimination, novel strategies for detecting very low malaria parasite densities in 

asymptomatic individuals are needed. One of the major limitations of the malaria parasite detection methods is 

the volume of blood samples being analyzed. The objective of the study was to compare the diagnostic accuracy 

of a malaria polymerase chain reaction assay, from dried blood spots (DBS, 5 L) and different volumes of 

venous blood (50 L, 200 L, and 1 mL). The limit of detection of the polymerase chain reaction assay, using 

calibrated Plasmodium falciparum blood dilutions, showed that venous blood samples (50 L, 200 L, 1 mL) 

combined with Qiagen extraction methods gave a similar threshold of 100 parasites/mL, 100-fold lower than 5 

L DBS/Instagene method. On a set of 521 field samples, collected in two different transmission areas in 

northern Cambodia, no significant difference in the proportion of parasite carriers, regardless of the methods 

used was found. The 5 L DBS method missed 27% of the samples detected by the 1 mL venous blood method, 

but most of the missed parasites carriers were infected by Plasmodium vivax (84%). The remaining missed P. 

falciparum parasite carriers (N = 3) were only detected in high-transmission areas. 

BACKGROUND 

For several years, the number of malaria cases in Southeast Asia has been significantly 

reduced as a result of the implementation of effective strategies.
1,2

 However, to achieve the 

goal of elimination, and especially the elimination of artemisinin-resistant Plasmodium 

falciparum parasites, which are emerging in this region,
3–12

 additional efforts are needed. 

Indeed, the detection of the reservoir of malaria parasites in asymptomatic populations is 

challenging and needs new actions, in particular, a change from passive case detection to 

active case detection, and new tools capable to detect very low parasitemia in field settings.
13

 

For two decades, the sensitivity of malaria diagnostic tests have considerably been 

improved with the introduction of molecular assays.
14

 One major limitation is the volume of 

blood samples collected and analyzed, obviously limited in mass screening studies (usually 5–

30 L). Indeed, higher volumes of blood may allow the detection of very low parasite density, 

and could reveal a higher than expected proportion of malaria parasite carriers, including 

mixed infections. To date, no studies have been published to assess the prevalence of 

asymptomatic parasite carriers in the population by comparing different sampling volumes of 

blood (from 5 L to 1 mL). 

Here, the detection limit of malaria polymerase chain reaction (PCR) assays, and then the 

prevalence of parasite carriers in a set of field samples, were evaluated by using different 
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volumes of blood and DNA extraction methods, by comparing the following conditions: 1) 

DNA extracted from dried blood spots (DBS) (5 L) with a fast and inexpensive extraction 

method, commonly performed in large-scale epidemiological studies in malaria-endemic 

countries
15

; 2 and 3) DNA extracted from 50 L and 200 L venous blood using the Qiagen 

mini kit based extraction method, commonly used in research studies; 4) DNA extracted from 

1 mL venous blood using the Qiagen midi kit based extraction method, representing here the 

gold standard. To this end, 521 samples were collected in Preah Vihear province, a low 

malaria transmission area (north eastern Cambodia) and aliquoted into four volumes: 5 L 

capillary blood spot onto filter paper, 50 L, 200 L, and 1 mL venous blood. Extracted 

DNAs were screened for the presence of Plasmodium using a qualitative real-time PCR assay 

targeting the cytochrome b gene. Samples identified as positives were then analyzed for 

Plasmodium species using four real-time PCR assays specifically amplifying P. falciparum, 

Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae.
15,16

 

The aim of this study is to gain a better knowledge of the unseen malaria reservoir in 

Cambodia, and to answer a critical question: How many malaria parasite carriers are missed 

by applying the conventional sampling such as small volume DBS? Resulting data should 

provide guidance on the best protocol to be used for mass screening studies to adapt our 

strategy aiming to clear the reservoir. 

MATERIALS AND METHODS 

Participants, blood collection, and processing. 

A total of 521 venous blood samples were collected in October 2013 in Preah Vihear 

province (located in north eastern Cambodia, along the Thailand and the Lao People’s 

Democratic Republic borders) as a sub-study of the cross-sectional population-based study 

described by Bosman and others.
17

 Two villages were selected, one with an expected high 

levels and another with an expected low levels of malaria transmission, based on the number 

of P. falciparum malaria cases confirmed by both microscopy and rapid diagnostic tests 

reported through the Cambodian Malaria Information System in 2012. In both villages, 75 

households were selected by systematic random sampling. A volume of 2 mL venous blood 

was collected in an EDTA tube from each participant aged at least 2 years who did not report 

anti-malarial drugs intake in the preceding month and who would freely consent to 

participate. For each participant, the age, sex and history of fever in the last 24 hours were 

recorded. 

Blood samples were stored at 4C in cool boxes, sent to the Institut Pasteur in Cambodia 

(IPC) within 24 h after blood collection, and aliquoted into four volumes: 5 L aliquoted in 

96 well-plates containing a 4 mm 3MM Whatman filter paper, 50 L, 200 L, and 1 mL, 

aliquoted in individual tubes. Additionally, twice 30 L were aliquoted on 3MM Whatman 

filter paper as back-up. Plasma and buffy coat were removed after centrifugation on the 1 mL 

aliquots, to prevent PCR inhibition caused by the high amount of human DNA. 

DNA extractions. 

The 5 L DBS samples were lysed overnight with HBS 1/Saponin 0.5% and DNAs were 

extracted using the Bio-Rad Instagene matrix (Bio-Rad, Singapore) as previously described.
15

 

The DNAs from the 50 and 200 L aliquots were extracted using the QiaAmp DNA blood 

mini kit (Qiagen, Courtaboeuf, France) and 1 mL aliquots were extracted using the QiaAmp 

DNA blood midi kit (Qiagen) following manufacturer’s recommendations. All DNA samples 

were eluted with 200 L buffer AE. After optimization experiences, DNA extracts from 200 



L and 1 mL volumes were not used pure but diluted by one-half and one-fifth, respectively, 

before the PCR assay, to avoid inhibition of the PCR reactions. 

Real-time PCR assays. 

Samples were screened for the presence of Plasmodium DNA using a qualitative real-time 

PCR assay targeting the cytochrome b gene. Positive samples were then analyzed for 

Plasmodium species using four real-time PCR assays targeting the same gene and specifically 

amplifying P. falciparum, P. vivax, P. ovale, and P. malariae. All real-time PCR assays were 

performed using SYBR green ready-to-use PCR mix (Solis Biodyne, Tartu, Estonia) on a 5 

L DNA template on the BioRad CFX96 real-time PCR system (BioRad). Details on the PCR 

program, mix composition, and primer sequences have been described in Canier and others.
15

 

Real-time PCR assays were followed by a melt curve analysis. 

Assay performance assessment. 

The detection threshold of the malaria screening assay was assessed by using the four 

volumes of blood: 5 L (dried blood spot), 50 L, 200 L, and 1 mL of blood. To this end, 

cultured 3D7 ring-stage parasites were adjusted to 1% parasitemia and serially diluted 10-fold 

using uninfected blood from the blood bank, to concentrations ranging from 1,000 to 0.01 

parasites/L. Each concentration was aliquoted into the four studied volumes and was 

screened for malaria parasites following the same protocols as study samples. In addition, the 

specificity of each four volumes of assay was assessed by analyzing blood from 29 malaria 

negative volunteers. 

Statistical analysis. 

All data were recorded and analyzed using Excel software (Microsoft, Redmond, WA) 

and MedCalc (MedCalc Software, Mariakerke, Belgium). The Fisher’s exact test or 
2
 test 

was used to compare the proportions of positive PCR results using the different blood sample 

methods, according to the transmission areas and the Plasmodium species. A P value < 0.05 

was considered to indicate statistical significance. 

Ethical consideration. 

The study protocol was submitted for approval to the Ethics Review Board of Médecins 

Sans Frontières and to the Cambodian National Ethics Committee on Health Research (0094 

NECHR, 24 June 2013). Written informed consent was obtained from each participant or 

legal representative for children < 18 years of age before participation. Participants with a 

positive by PCR for Plasmodium were offered free treatment according to national guidelines: 

dihydroartemisinin/piperaquine (DHA-PIP) for 3 days or quinine for 7 days for women in the 

first trimester of pregnancy. 

RESULTS 

Blood volume and assays performance (using quality control samples). 

The limit of detection of the PCR screening assay for each studied volume was evaluated 

on P. falciparum blood serial dilutions. Results are presented in Table 1. Using 5 L DBS 

samples, the assay was able to detect 100% of infections at 10 parasites/µL, and about 50% of 

infections at 1 parasites/µL. 

Using different volumes of venous blood (50 L, 200 L, 1 mL), the PCR detection rate 

was 90–95% for samples at 0.1 parasite/µL (or 100 parasites/mL). Less than 50% of samples 



with 0.01 parasite/µL (or 10 parasites/mL) were detected using the 200 L and 1 mL volumes 

of venous blood. The use of venous blood volumes (50 L, 200 L, and 1 mL) combined with 

Qiagen extraction methods, resulted in a similar detection threshold of 100 parasites/mL, 

100-fold lower than the protocol using 5 L DBS/Instagene extraction (proportion of 

positive PCR at 100 parasites/mL, P < 10
4

). Surprisingly, samples at 10 parasites/ml gave a 

higher proportion of positive PCR by using 200 L of venous blood (7/21) compared with 1 

mL of venous blood (2/21) but this difference was not significant (P = 0.09). All negative 

samples (malaria negative volunteers, N = 29) were found negative with the four volumes 

tested. 

The screening assay showed a reproducible linearity with R
2
 > 0.9 for each volume 

analyzed, as shown by the standard curve presented in Figure 1. 

Blood volume and prevalence of Plasmodium carriage (using field samples). 

Malaria screening. 

A total of 521 blood samples were analyzed using the four different volumes of blood. 

Samples were collected in two villages: 246 samples in a “low malaria transmission” village, 

59% of the participants being female and 9% < 5 years of age; and 275 samples in a “high 

malaria transmission” village, 56% of the participants being female and 8% < 5 years of age. 

In the low transmission village, 6/246, 6/246, 7/246, and 7/246 Plasmodium carriers were 

detected using the 5 L, 50 L, 200 L, and 1 mL methods, respectively. The global 

prevalence of Plasmodium carriage rose from 2.4% to 2.8% when increasing the analyzed 

volume from 5 L to 1 mL. Only one Plasmodium vivax infection was detected by using 

higher volumes of blood (200 L and 1 mL) (Table 2). 

In the “high transmission” village; 43/275, 55/275, 57/275 and 60/275 Plasmodium 

carriers were detected using the 5 L, 50 L, 200 L and 1 mL methods, respectively, raising 

the global prevalence of Plasmodium carriage from 15.6% (5 L) to 21.8% (1 mL) (Table 2). 

However, the difference of prevalence observed between the different volumes was not 

significant (P = 0.09). All positive samples with the 5 L DBS methods were also positive 

with the three other blood volumes methods. According to the detected Plasmodium species, 

the prevalence of P. falciparum, which increased from 2.5% (5 L) to 3.6% (1 mL) were not 

significantly different (P = 0.4); most of the individuals that failed to be detected by using 5 

L DBS were infected by P. vivax (84%). However, the prevalence of P. vivax increasing 

from 7.9% (5 L) to 10.9% (1 mL) were not significantly different (P = 0.10). 

The 5 L DBS method was capable of detecting > 73% of the samples detected positive 

using the 1 mL method (73% and 72% for P. falciparum and P. vivax, respectively), in both 

the “low” (86%) and “high” transmission villages (72%). The estimation of the Plasmodium 

carriage prevalence increased by 1.4-fold with the 1 mL method, compared with the 5 L 

DBS method (1.2-fold in the “low setting”; 1.4-fold in the “high setting”). It is worth noting 

that the same prevalence were found for P. falciparum infections in low setting areas, 

regardless of the volume of blood used (0.41%), although in a high-transmission area, the 

prevalence was 1.4-fold higher by using 1 mL method compared with the 5 L DBS method. 

Methods using 50 L, 200 L, and 1 mL of venous blood were equally effective in 

detecting P. falciparum parasite carriers in the same set of blood samples, regardless of the 

transmission areas. However, in both areas, P. vivax parasite carriers were more frequently 

detected by using higher volumes of blood (1.3- to 1.4-fold). 



Malaria species. 

Malaria species identification was performed on 5 L and 1 mL DNA samples. Among 

the 521 tested samples, P. vivax was the most prevalent species, representing more than 80% 

of the positive samples, followed by P. falciparum present in < 20% of the samples. Only one 

carrier of P. malariae and no P. ovale infection were identified. Almost all infections were 

single infections, one P. falciparum/P. malariae mixed infection was detected with the 5 L 

method, and two mixed infections were detected with the 1 mL method (the same P. 

falciparum/P. malariae, and a P. falciparum/P. vivax) (Table 3). 

Species results obtained from the 5 L were 100% concordant with results obtained using 

1 mL DNA extracts (N = 49). Additional infections detected with the 1 mL method (N = 18) 

consisted of 16 P. vivax, 1 P. falciparum, 1 P. falciparum/P. vivax (Table 3). 

DISCUSSION 

The use of different volumes of calibrated venous blood, i.e., 50 L, 200 L, and 1 mL, 

combined with Qiagen extraction methods resulted in a similar detection threshold of 100 

parasites/mL, which is more sensitive than the protocol using 5 L DBS/Instagene extraction, 

whose detection threshold is usually around 1,000–10,000 parasites/mL.
18

 However, when 

analyzing field samples collected in two different transmission areas, there was no evidence 

of a difference in the parasite carrier detection rate of the methods using 5 L DBS, 50 L, 

200 L, and 1 mL of venous blood (P = 0.78 and P = 0.09, respectively). On a set of 521 

samples from Preah Vihear province, the 5 L DBS method missed 27% of the parasite 

carriers detected using the 1 mL method. Most of the parasite carriers missed by the 5 L 

DBS method were infected by P. vivax (84%). The remaining P. falciparum parasite carriers 

(N = 3) missed by the 5 L DBS were detected among samples from high-transmission areas. 

Similar results performed in symptomatic patients were also observed in different malaria 

transmission areas. In Tanzania, a high-transmission area, Strøm and others
18

 found almost 2-

fold more positives when using a 200 L venous blood protocol in febrile children: positivity 

of PCR was 24.5% (78 of 319) and 11.2% (52 of 442) using 200 L whole blood and DBS, 

respectively. Although in Iran, which is considered as a low-transmission area, Ataei and 

others
19

 observed a malaria prevalence of 42.7% and 46.7% (1.1-fold increase) when using 

DBS and 200 L of venous blood, respectively, among malaria suspected patients. 

It was observed that the PCR assay using pure DNA extracts failed to amplify a large part 

of 1 mL samples compared with the 1/5 dilution of DNA extracts, probably because of the 

presence of inhibitors. A similar effect was also occasionally observed with the 200 L DNA 

extracts. Repetition of the serial dilution of samples detected as negative with pure DNA and 

positive with diluted DNA confirmed the assumption of an inhibition effect. Obviously, the 

addition of a dilution step solved this inhibition issue, but likely reduced the initial sensitivity 

potential of the screening assay combined with 200 L and 1 mL venous blood volumes. 

Although the use of DNA extracted from 5 L DBS missed detecting parasite carriers, 

blood collection on filter paper remains a practical method with multiple advantages: 1) 

sample blood collection from finger prick, which is less invasive; 2) storage and transport of 

the samples at ambient temperature; 3) quick training for sample collection; and 4) minor 

biohazard risks. Indeed, venipuncture sampling for detecting malaria parasites using PCR 

assays implies a number of limitations such as the reluctance of patients, some difficulties in 

transportation of blood samples and freezing them for a long time
19

. Therefore, the 5 L DBS 

remains one of the methods of choice for large-scale studies on prevalence of malaria carriage 

(especially P. falciparum infections in low-transmission areas) and/or studies into resistance. 



However, for studies in elimination contexts, where detection of every single carrier of 

Plasmodium is paramount, the 5 L DBS approach may be suboptimal. 

Combined with Instagene DNA extraction (or chelex), the 5 L DBS approach allows a 

quick, easy, and inexpensive preparation of samples for PCR assays. From our experience, 

malaria screening using Instagene DNA extraction from 5 L DBS, Qiagen mini kit (50–200 

L blood), Qiagen midi kit (1 mL blood) cost US$2.5, US$6, and US$12, respectively, per 

sample and allow to proceed 192, 72, and 32 samples per day per technician. Therefore, the 

replacement of the 5 L DBS/Instagene by the “venous blood”/Qiagen is challenging in 

resource-poor settings. 

CONCLUSIONS 

The study presented here, clearly shows that malaria parasite detection rates are not 

significantly increased by using venous blood samples/Qiagen method compared with 5 L 

DBS/Instagene, especially for P. falciparum infections in low-transmission areas. Most of the 

samples missed by the 5 L DBS/Instagene method were P. vivax infections, which are often 

found at very low parasite density in asymptomatic individuals. In addition, finger prick blood 

spots collection presents numerous advantages, including cost, and remains a more practical 

method for large-scale epidemiological studies, especially in low transmission malaria-

endemic settings, where active case detection strategies need to be implemented. 

Finally, in the context of malaria elimination, the main challenge is to detect all 

falciparum malaria parasite transmitters (i.e., individuals with a sufficient number of sexual 

parasites to be transmitted by mosquito bites). Further studies are needed to assess the 

association between PCR detection data (and especially gametocytes detection) and mosquito 

feeding assays, which is used as a gold standard approach, to determine the infectiousness of 

P. falciparum gametocyte carriers. This would help defining the required sensitivity of a 

diagnostic tool to be able to detect parasite carriers that are infectious. 
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FIGURE 1. Standard curve of the malaria screening assay for each volume (triplicates), according to parasite 

concentrations (per mL) and cycle threshold (Ct) values. 

 

 

 

 

 



TABLE 1 

Proportion of positive cases per dilution, for each studied volume, Preah Vihear, Cambodia 2013* 

Parasite concentration 5 L DBS 50 L blood 200 L blood 1 mL blood 

p/µL p/mL No. of positive % No. of positive % No. of positive % No. of positive % 

1,000 1,000,000 21/21 100 21/21 100 21/21 100 21/21 100 

100 100,000 21/21 100 21/21 100 21/21 100 21/21 100 

10 10,000 21/21 100 21/21 100 21/21 100 21/21 100 

1 1,000 11/21 52 21/21 100 21/21 100 21/21 100 

0.1 100 1/21 5 19/21 90 20/21 95 20/21 95 

0.01 10 N/A  0/21 0 7/21 33 2/21 10 

0 0 0/21 0 0/21 0 0/21 0 0/21 0 

* Each dilution was tested in triplicate in seven polymerases chain reaction (PCR) assays (N = 21). 

DBS = dried blood spots. 

TABLE 2 

Prevalence of Plasmodium spp. carriage and number of carriers detected per village, per tested volume, and per 

Plasmodium species, Preah Vihear, Cambodia 2013 

Village N  

Blood volumes 

5 L 50 L 200 L 1 mL 
No. of positive % of positive No. of positive % of positive No. of positive % of positive No. of positive % of positive 

Low 246 

Total 6 2,44 6 2,44 7 2,85 7 2,85 

Pf 1* 0,41 1* 0,41 1* 0,41 1* 0,41 

Pv 5 2,03 5 2,03 6 2,44 6 2,44 

High 275 

Total 43 15,64 55 20,00 57 20,73 60 21,82 

Pf 7 2,55 10† 3,64 10† 3,64 10† 3,64 

Pv 36 13,09 46† 16,73 48† 17,45 51† 18,55 

Total 521 

 49 9,40 61 11,71 64 12,28 67 12.9 

Pf 8 1,54 11† 2,11 11† 2,11 11† 2,11 

Pv 41 7,87 51† 9,79 54† 10,36 57† 10,94 

* Including one Pf/Pm mixed infection. 

† One Pf/Pv mixed infection. 

TABLE 3 

Malaria species identification, for 5 L and 1 mL of tested volume, Preah Vihear, Cambodia 2013 

 
Blood volumes 

Increased malaria PCR diagnostic accuracy (CI 95%) 
5 L 1 mL 

Total positives 49 67 1.36 (1.06–1.73) 

P. falciparum 8 9 1.12 (0.51–2.13) 

P. vivax 40 56 1.40 (1.06–1.82) 

P. malariae 0 0  

P. ovale 0 0  

P. falciparum/P. vivax 0 1  

P. falciparum/P. malariae 1 1  

% of each species among positives 

P. falciparum 18.4% 16.4%  

P. vivax 81.6% 85.1%  

P. malariae 2.0% 1.5%  

P. ovale 0.0% 0.0%  

PCR = polymerase chain reaction; CI = confidence interval. 
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