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Abstract 24 

This work evaluated a serial blood sampling procedure to enhance the sensitivity of duplex 25 

real-time PCR (qPCR) for baseline detection and quantification of parasitic loads and post-26 

treatment identification of failure in the context of clinical trials for treatment of chronic 27 

Chagas disease, namely DNDi-CH-E1224-001 (NCT01489228) and MSF-DNDi PCR 28 

sampling optimization study (NCT01678599). Patients from Cochabamba (N= 294), Tarija 29 

(N= 257), and Aiquile (N= 220) were enrolled. Three serial blood samples were collected at 30 

each time-point and qPCR triplicates were tested per sample. The first two samples were 31 

collected during the same day and the third one seven days later. 32 

A patient was considered PCR positive if at least one qPCR replicate was detectable. 33 

Cumulative results of multiple samples and qPCR replicates enhanced the proportion of pre-34 

treatment sample positivity from 54.8 to 76.2%, 59.5 to 77.8%, and 73.5 to 90.2% in 35 

Cochabamba, Tarija, and Aiquile cohorts, respectively. This strategy increased the detection 36 

of treatment failure from 72.9 to 91.7%, 77.8 to 88.9%, and 42.9 to 69.1% for E1224 low, 37 

short, and high dosage regimens, respectively; and from 4.6 to 15.9% and 9.5 to 32.1% for the 38 

benznidazole arm in the DNDi-CH-E1224-001 and MSF-DNDi studies, respectively. The 39 

addition of the third blood sample and third qPCR replicate in patients with non-detectable 40 

PCR results in the first two samples, gave a small, non-statistically significant improvement 41 

in qPCR positivity. No change in clinical sensitivity was seen with a blood volume increase 42 

from 5 to 10 ml. The monitoring of patients treated with placebo in the DNDi-CH-E1224-001 43 

trial revealed fluctuations in parasitic loads and occasional non-detectable results. In 44 

conclusion, serial sampling strategy enhanced PCR sensitivity to detecting treatment failure 45 

during follow-up and has the potential for improving recruitment capacity in Chagas disease 46 

trials, which require an initial positive qPCR result for patient admission. 47 

 48 
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Introduction 52 

Following years of little progress in research and development of new compounds for 53 

treatment of Chagas disease (CD), new chemical classes and alternative treatment regimens 54 

have demonstrated encouraging activity against its causative agent, Trypanosoma cruzi (1-4). 55 

The efficacy of anti-T. cruzi compounds has habitually been measured by means of parasite 56 

detection or antibody titers. However, in chronically infected patients, traditional 57 

parasitological methods lack sensitivity and T. cruzi-specific antibody titers don’t usually 58 

decrease until many years after treatment (5). In this context, molecular methods, such as 59 

conventional and real-time PCR (qPCR) assays, have opened promising opportunities for 60 

monitoring bloodstream parasitic levels to detect therapeutic failure or response (6–8). 61 

Following this approach, multicenter PCR studies have allowed harmonization and validation 62 

of standard operating procedures (SOPs) for PCR-based detection and quantification of T. 63 

cruzi DNA in blood samples (10, 11) coupled with external control quality assurance (12). 64 

However, the best performing qPCR methods reached between 60-70% of positivity in 65 

untreated chronic Chagas disease patients when a single baseline blood sample was tested (10, 66 

11, 13), a figure which has been verified in different clinical trials (14–16). 67 

 68 

In clinical trials in which eligibility criteria for patient enrollment include PCR positivity, 69 

such low values of sensitivity require that a larger proportion of seropositive subjects must be 70 

screened before being admitted. To overcome this limitation, a PCR sampling optimization 71 

study (NCT01678599) was developed by Drugs for Neglected Diseases initiative (DNDi) and 72 

Médecins Sans Frontières (MSF) with the aim of evaluating sampling conditions for qPCR 73 

monitoring of benznidazole (BZN) treatment, as well as DNDi-CH-E1224-001, a DNDi-74 

sponsored randomized clinical trial (NCT01489228) to evaluate safety and efficacy of three 75 

oral regimens of E1224 (ravuconazole prodrug) in comparison with BZN and placebo, which 76 
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planned to collect three serial peripheral blood samples from each patient at each follow-up 77 

time point and to perform qPCR in triplicate from each blood sample DNA extract. 78 

 79 

This report presents the data obtained in these studies, showing an improvement in qPCR 80 

clinical sensitivity for both enrollment and detection of treatment failure in adult patients with 81 

chronic Chagas disease. 82 

 83 

Methods 84 

Ethics statement 85 

The clinical trials, including the sampling requirements, were approved by the Ethical Review 86 

Boards of Universidad Mayor de San Simón, Fundación CEADES, Hospital Clínic and 87 

Médecins Sans Frontières, following the principles expressed in the Declaration of Helsinki. 88 

Written informed consent forms were signed by the study volunteers (no minor subjects were 89 

included in these trials). All samples were anonymized before being processed. 90 

 91 

Subjects and samples 92 

Subjects were recruited for two different clinical studies: 93 

i) The DNDi-CH-E1224-001 clinical trial (NCT01489228), designed and sponsored by 94 

DNDi, with a proof-of-concept double-blinded randomized design aiming to evaluate the 95 

safety and efficacy of three (high, low, and short) oral regimens of E1224, compared to BZN 96 

(5 mg/kg/day) and placebo, during 60 days of treatment of adult patients with chronic 97 

indeterminate Chagas disease (17). A total of 560 patients aged 18-50 years and serologically 98 

confirmed as having Chagas disease were screened in two study sites of The Platform for a 99 

Comprehensive Care of Patients with Chagas disease in Bolivia, one site in the city of 100 

Cochabamba and the other in the city of Tarija. Of those screened, 551 patients had PCR 101 
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results available for analyses, as a total of 9 patients withdrew consent for participation and no 102 

PCR sample was collected.  103 

 104 

Samples consisted of peripheral blood mixed with an equal volume of guanidine 105 

hydrochloride 6 M EDTA 0.2 M pH 8.0 buffer. A maximum of three 10 mL blood samples 106 

were collected at baseline: sample 1 (S1) and sample 2 (S2) were collected during the same 107 

day and sample 3 (S3) seven days later, but only if DNA extracts from S1 and S2 gave non-108 

detectable results (as depicted in Figure 1). The qPCR was assayed in duplicate from both S1 109 

and S2 DNA extracts. In cases where both replicates gave non-detectable results, a third 110 

replicate was analyzed. When all qPCR replicates from both S1 and S2 gave non-detectable 111 

results, S3 was collected and assayed in triplicate. During follow-up, three blood samples 112 

were collected at each time-point visit (end of treatment [EOT], and 2, 4, and 10 months post-113 

treatment) and qPCR was assayed in triplicate from each S1, S2, and S3 DNA extract (Figure 114 

1). 115 

 116 

ii) The PCR Sampling Optimization study (NCT01678599) launched by DNDi and MSF 117 

aimed to evaluate sampling strategies for qPCR treatment monitoring in adult patients with 118 

chronic Chagas disease (with indeterminate or early target organ involvement) treated with 119 

BZN (5 mg/kg/day) for 60 days. This study was carried out in 17 communities in the rural 120 

locality of Aiquile and did not include a placebo or other comparison treatment group. A total 121 

of 220 patients aged 18-60 years with serologically confirmed Chagas disease were recruited 122 

for this trial but only those with qPCR results at baseline were considered in this work (N= 123 

205). All houses of patients entering the study were subjected to entomological surveillance. 124 

 125 
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From each seropositive patient, three blood samples were collected at baseline and at each 126 

follow-up visit (EOT, 4, and 10 months post-treatment) (Figure 1). S1 and S2 were collected 127 

during the same day and S3 seven days later. S1 and S3 consisted of 10 mL of blood, whereas 128 

for S2 5 mL was collected; all samples were mixed with an equal volume of guanidine-EDTA 129 

buffer. The qPCR was assayed in triplicate from each S1, S2, and S3 DNA extract (Figure 1). 130 

 131 

Only patients with at least one positive result out of a maximum of nine qPCR replicates were 132 

enrolled in these trials. In both studies, therapeutic failure was defined as the persistence of 133 

parasite DNA, detected in at least one qPCR replicate, at any time-point during post-treatment 134 

follow-up. 135 

 136 

DNA extraction 137 

The High Pure PCR Template Preparation kit (Roche Diagnostics Corp., Indianapolis, IN) 138 

was used to process 300 µL of each guanidine-EDTA-blood (GEB) sample and DNA was 139 

eluted in 100 µL elution buffer, as previously described (13). 140 

 141 

Quantitative real-time PCR procedure 142 

A duplex qPCR targeted to T. cruzi satellite DNA (SatDNA) and an internal amplification 143 

control (IAC) were used, as previously described (13). The qPCR reactions were carried out 144 

with the use of FastStart Universal Probe Master Mix (Roche Diagnostics GmbHCorp., 145 

Mannheim, Germany) with 5 μL DNA extract in a final volume of 20 μL. Cycling conditions 146 

were a first step of 10 minutes at 95 ºC, followed by 40 cycles at 95 ºC for 15 seconds, and a 147 

final step of 1 minute at 58 °C. The amplifications were carried out in a Rotor-Gene Q 148 

(Corbett LifeScience, Cambridgeshire, United Kingdom) real-time PCR device. 149 

 150 
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For quantification purposes, standard curves were plotted with 1/10 serial dilutions of total 151 

DNA obtained from a GEB seronegative sample spiked with 10
5
 par. eq./mL LL014-1-R1 Cl1 152 

T. cruzi stock (TcV) cultured epimastigotes. One negative control and two positive controls 153 

containing 10 and 1 fg/µL T. cruzi CL-Brener DNA were included in every run, as 154 

recommended (18). 155 

 156 

Genotyping of T. cruzi discrete typing units 157 

Baseline samples from both clinical studies with SatDNA qPCR Ct (threshold cycle) values 158 

below 33 (N= 180) were genotyped using PCR-based strategies targeted to nuclear genomic 159 

markers, namely: (1) spliced leader intergenic region (SL-IR) based PCR was used to 160 

distinguish TcI (150 bp), and TcII, TcV, and TcVI (157 bp) from TcIII and TcIV (200 bp); (2) 161 

heminested SL-IR-I PCR was used to confirm TcI (350 bp) and heminested SL-IR-II PCR 162 

was used to confirm TcII, TcV, and TcVI (300 bp); (3) heminested PCR of the 24S alpha-163 

ribosomal DNA (24Sα-rDNA) was used to distinguish TcV (125 bp) from TcII and TcVI (140 164 

bp); and (4) heminested PCR targeted to genomic fragment A10 was used to discriminate TcII 165 

(580 bp) from TcVI (525 bp) (19). 166 

 167 

Samples that yielded positive results by SL-IR-II PCR but were non-detectable by 24Sα-168 

rDNA PCR were reported as belonging to the TcII/V/VI group. Those samples that amplified 169 

the 140 bp of 24Sα-rDNA fragment but had non-detectable results for A10 fragment-based 170 

PCR were reported as belonging to TcII/VI group. Those samples amplifying both bands of 171 

125 and 140 bp after 24Sα-rDNA PCR, were interpreted as mixed infections by TcV plus TcII 172 

and/or TcVI, as previously described (19). 173 

 174 

Statistical analysis 175 
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McNemar's test was used to compare the qualitative qPCR results for S1, S2, and S3 samples 176 

from Cochabamba, Tarija, and Aiquile cohorts at baseline, and between baseline and follow-177 

up time-point samples from each treatment group in both clinical trials. The Fisher's exact test 178 

was used to compare the qPCR sensitivity using two or three replicates, and one, two, or three 179 

serial samples, and to compare the qPCR positivity between the baseline samples from 180 

Cochabamba, Tarija, and Aiquile cohorts, as well as the cumulative therapeutic failure at the 181 

end of 12-month follow-up within each treatment group using one, two, or three serial 182 

samples, and between BZN arms from both trials. Kruskal-Wallis non-parametric analysis of 183 

variance was used to compare the medians of the parasitic loads of quantifiable samples from 184 

Cochabamba, Tarija, and Aiquile cohorts at baseline, and from each treatment group at 185 

baseline and follow-up time-points. The Tukey's criterion was used to detect samples with 186 

outlier Ct values of IAC (Cts> 75th percentile + 1.5 x interquartile distance of median Ct) 187 

(20). All analyses were performed using SPSS Statistics for Windows V17.0 (SPSS, Chicago, 188 

IL). 189 

 190 

Results 191 

Screening of pre-treated chronic CD patients in DNDi-CH-E1224-001 and MSF-DNDi 192 

PCR sampling optimization studies 193 

Analysis of qPCR replicates in the DNDi-CH-E1224-001 trial 194 

In this trial, qPCR was firstly assayed in duplicate from each S1 and S2 DNA extract. When 195 

both replicates gave non-detectable qPCR results from one of these DNA extracts, a third 196 

qPCR replicate was analyzed from the corresponding sample. When the third replicate was 197 

included, qPCR positivity increased from 54.8 to 60.5% (S1) and from 53.6 to 59.2% (S2) in 198 

samples collected from the Cochabamba cohort, and from 59.5 to 63.4% (S1) and from 55.3 199 

to 60.7% (S2) in those collected from the Tarija cohort (Table 1, p> 0.05). 200 
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 201 

Analysis of serial blood samples 202 

In the DNDi-CH-E1224-001 trial, the comparison of qPCR positivity obtained after testing 203 

individual S1 or S2 samples did not give significant differences (Table 1, p> 0.05) but qPCR 204 

positivity increased when cumulative results from S1+S2 were computed; this was observed 205 

in both Cochabamba (60.5 vs 69.7%, p< 0.05) and Tarija cohorts (63.4 vs 73.9%, p< 0.05). 206 

 207 

When S1 and S2 gave non-detectable qPCR results, a third sample (S3) was taken seven days 208 

later. The analysis of PCR positivity obtained using three serial samples (S1+S2+S3) 209 

compared to that obtained from individual samples demonstrated higher sensitivity for both 210 

Cochabamba (60.5 vs 76.2%, p< 0.001) and Tarija cohorts (63.4 vs 77.8%, p< 0.001). Finally, 211 

qPCR positivity obtained after testing S1+S2 versus that obtained after testing S1+S2+S3 212 

increased by 6.5% (N= 19/294) in Cochabamba and 3.9% (N= 10/257) in Tarija cohorts 213 

(Table 1, p> 0.05). 214 

 215 

On the other hand, no statistical difference was observed in qPCR positivity by testing 216 

individual S1, S2, or S3 samples in the MSF-DNDi PCR sampling optimization study (Table 217 

1, p> 0.05). Computing the cumulative qPCR positivity obtained for S1+S2 (85.1%) in 218 

comparison to the positivity obtained for S1 (10 mL of blood, 73.5%, p< 0.01) or S2 alone (5 219 

mL of blood, 76.9%, p< 0.05) increased sensitivity. This was also true for the cumulative 220 

qPCR positivity obtained for S1+S2+S3 (90.2%) compared to that obtained for the individual 221 

samples (S1, p< 0.001; S2, p< 0.001; and S3, 72.7%, p< 0.001). Comparison of the 222 

cumulative qPCR positivity obtained from S1+S2+S3 with respect to S1+S2 showed an 223 

increase of 5.1% (Table 1, p> 0.05). 224 

 225 
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Analysis of T. cruzi DTUs and parasitic loads 226 

It is worth noting the higher qPCR positivity obtained in patients from Aiquile (90.2%) 227 

compared to those recruited from Cochabamba (76.2%, p< 0.001) and Tarija (77.8%, p< 228 

0.001); whereas no difference was found between both E1224 trial cohorts (Table 1, p> 0.05). 229 

Because both studies used the same qPCR method performed in the same laboratory, a 230 

hypothesis for this geographical variability in qPCR positivity could be related to diversity of 231 

T. cruzi strains or parasitic loads in the populations studied, and/or to a higher endemicity and 232 

exposure to the vector in Aiquile, and therefore a potential risk of reinfection. In order to 233 

investigate this, the distribution of T. cruzi DTUs was analyzed by genotyping the 180 qPCR 234 

positive samples from these localities with the highest parasitic loads. 235 

 236 

DTUs could be identified in 31 samples: 23 patients were infected with parasite populations 237 

belonging to the group TcII/V/VI, six patients were infected with TcI and two presented 238 

mixed infections by TcI plus TcII/V/VI (Table 2). TcI was five times more frequent in 239 

Cochabamba and Tarija in comparison to Aiquile, although the low number of genotyped 240 

samples preclude determination of its significance. TcIII and TcIV were not detected.21 241 

 242 

The parasitic loads of baseline samples from the three different cohorts are shown in Fig 2. In 243 

Aiquile, 33.0% of samples had parasitic loads above the qPCR Limit of Quantification (LOQ) 244 

of 1.53 par. eq./mL, whereas in Cochabamba and Tarija the percentage of quantifiable 245 

samples was 19.6% and 24.5%, respectively (Table 1). The median and interquartile range 246 

values of the quantifiable parasitic loads were 2.6 [2.0-3.5], 2.6 [2.0-3.6], and 3.0 [2.0-4.7] 247 

par. eq./mL, for Cochabamba, Tarija, and Aiquile cohorts, respectively (Table 1, p> 0.05). 248 

 249 
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Follow-up of treated chronic CD patients in DNDi-CH-E1224-001 and MSF-DNDi PCR 250 

sampling optimization studies 251 

Analysis of qPCR positivity and parasitic loads 252 

Table 3 shows the cumulative qPCR findings obtained from all three serial blood samples 253 

during screening and monitoring of all treatment arms in both clinical trials. 254 

 255 

The qPCR positivity of the placebo group from the DNDi-CH-E1224-001 clinical trial was 256 

significantly higher at baseline (100%, as per study entry criteria) than at the follow-up time-257 

points (2 months, 73.9%, p< 0.01; 4 months, 80.4%, p< 0.01; 6 months, 87.0%, p< 0.05; 12 258 

months, 78.3%, p< 0.01), whereas no differences were found between follow-up time-points 259 

(Table 3, p> 0.05). Out of the patients who received placebo, 27 were persistently qPCR 260 

positive, 15 had intermittently positive and non-detectable results, and four became 261 

persistently qPCR undetectable during follow-up. 262 

 263 

In both clinical trials, the treated cohorts showed a drastic reduction in PCR positivity at EOT. 264 

(E1224 LD, 10.4%; E1224 SD, 8.9%; E1224 HD, 16.7%; DNDi-CH-E1224-001BZN, 6.8%; 265 

DNDi-MSF sampling optimization study BZN, 23.1%) (Table 3, p< 0,001). In the E1224 266 

treatment arms, qPCR positivity increased during post-treatment follow-up, reaching its 267 

highest value at the end of the study (E1224 LD, 76.6%, p< 0.001; E1224 SD, 84.4%, p< 268 

0.001; E1224 HD, 56.1%, p< 0.01), whereas in the cohorts treated with BZN, the proportion 269 

of qPCR-positive cases diminished at the end of follow-up (DNDi-CH-E1224-001 BZN, 270 

4.5%, p> 0.05; DNDi-MSF sampling optimization study BZN, 5.2%, p< 0.01). 271 

 272 

Interestingly, all treatment arms showed statistically significant differences between the 273 

proportion of positive qPCR results at baseline and end of follow-up (E1224 LD, p< 0.01; 274 
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E1224 SD, p< 0.05; E1224 HD, p< 0.001; DNDi-CH-E1224-001  BZN, p< 0.001; DNDi-275 

MSF sampling optimization study BZN, p< 0.001). 276 

 277 

The number of patients with quantifiable qPCRs results from the placebo group of the E1224 278 

trial ranged between 14-16 during follow-up; except at 4 months when, as at baseline, nine 279 

patients rendered quantifiable qPCR results (Table 3). Out of the nine patients enrolled in the 280 

placebo group of DNDi-CH-E1224-001 who showed quantifiable parasitic loads at baseline , 281 

five had quantifiable results throughout follow-up, two patients alternated between 282 

quantifiable and non-quantifiable results, and the two remaining showed persistent detectable 283 

but non-quantifiable qPCR results throughout follow-up. No significant differences were 284 

found among the medians of parasitic loads at baseline and follow-up time-points in the 285 

placebo group of the DNDi-CH-E1224-001 trial (Fig 3A, p> 0.05). 286 

 287 

Patients treated with E1224 showed non-quantifiable parasitic loads at the end of treatment, 288 

but this increased later on; indeed, 12 cases reached quantifiable loads for E1224 low dose 289 

(LD) and short dose (SD) regimes and six in E1224 high dose (HD) regime at the end of 290 

follow-up; whereas in BZN treated groups only one patient had parasitic loads higher than 291 

1.53 par. eq./mL during follow-up (Table 3). Statistically significant differences were 292 

observed between parasitic loads at baseline and 6 months for E1224 LD (3.5 [2.6-7.0] and 293 

2.1 [1.7-2.4] par. eq./mL, respectively Fig 3B, p< 0.05), and between baseline and 12 months 294 

(2.5 [1.9-3.4]) and2.0 [1.9-2.2] par. eq./mL) for E1224 HD Fig 3D, p< 0.05). 295 

 296 

Analysis of cumulative therapeutic failure 297 

Fig 4 compares the cumulative qPCR positivity as a measure of treatment failure obtained for 298 

each treatment group in both clinical trials from EOT until the end of follow-up. 299 

 300 
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In the DNDi-CH-E1224-001 trial, the multi-sampling strategy (S1+S2+S3) increased 301 

detection of treatment failure at the end of follow-up by up to 91.7% for E1224 LD (Fig 4B, 302 

p< 0.05), 88.9% for E1224 SD (Fig 4C, p> 0.05), 69.1% for E1224 HD (Fig 4D, p< 0.05), 303 

and 15.9% for BZN (Fig 4E, p> 0.05) arms. No significant differences were found between 304 

the cumulative treatment failure detected for single S1 (72.9, 77.8, 42.9, and 4.6%), S2 (70.8, 305 

86.7, 50.0, and 4.6%), and S3 (72.9, 82.2, 45.2, and 6.8%) samples, and comparing S1+S2 306 

(81.3, 88.9, 61.9, and 9.1%) versus S1+S2+S3 for E1224 LD, SD, and HD, and BZN arms, 307 

respectively (Fig 4, p> 0.05). 308 

 309 

In the MSF-DNDi PCR sampling optimization study, the strategy involving serial sampling 310 

analysis allowed an increase in detection of treatment failure of up to 32.1% (S1+S2+S3) at 311 

the end of follow-up in comparison to that detected from individual samples (S1, 9.5%, p< 312 

0.001; S2, 19.0%, p< 0.05; S3, 11.0%, p< 0.001). Significant difference was found between 313 

the cumulative treatment failure of S1 and S2 (p< 0.05), whereas no differences were found 314 

between S3 and S1 or S2 (Fig 4F, p> 0.05). There was an increase of 7.3% in cumulative 315 

treatment failure detected after testing S1+S2+S3 versus that detected after testing S1+S2 316 

(24.8%) (Fig 4F, p> 0.05). 317 

 318 

Analysis of cumulative therapeutic failure among the different groups of treatment of E1224 319 

trial did not show significant differences among placebo and E1224 LD and SD arms (Fig. 4, 320 

p> 0.05). In contrast, the E1224 HD arm showed lower treatment failure than placebo (p< 321 

0.05) and E1224 LD (p< 0.01) and SD (p< 0.05). In addition, the  DNDi-CH-E1224-001 BZN 322 

group showed lower treatment failure than placebo and E1224 arms (p< 0.001). 323 

 324 
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No statistically significant differences were observed between the cumulative therapeutic 325 

failure of BZN-treated cohorts enrolled in DNDi-CH-E1224-001 and MSF-DNDi PCR 326 

sampling optimization studies (Figure 4; p> 0.05). 327 

 328 

Discussion 329 

Impact of serial sampling strategies on qPCR sensitivity 330 

In recent years, several clinical trials to evaluate anti-parasitic treatments for CD were carried 331 

out using different sampling strategies and PCR protocols, and variable rates of PCR 332 

positivity were obtained (14, 15, 21). 333 

 334 

The present analyses shows that qPCR sensitivity was significantly improved at baseline in 335 

the DNDi-CH-E1224-001 trial when two blood samples were collected and each DNA extract 336 

was analyzed in duplicate by qPCR. The addition of the third blood sample and third qPCR 337 

replicate in the subset of patients who had non-detectable PCR results for S1 and S2, gave a 338 

small but non-statistically significant improvement in positivity. The limited data available 339 

thus far is insufficient to determine the clinical relevance of this small increase in qPCR 340 

sensitivity in the evaluation of treatment response. In fact, the samples with only one out of 341 

three PCR positive results were non-quantifiable. As treatment was expected to reduce further 342 

the parasite burden in those patients with non-quantifiable baseline qPCR results, reducing the 343 

chance of detecting treatment failure, three blood samples and qPCR triplicates were tested 344 

during post-treatment follow-up. 345 

 346 

In the MSF-DNDi PCR sampling optimization study, the use of 5 mL of blood, instead of 10 347 

mL as starting sample for qPCR analysis, as well as the collection of a third blood sample 348 
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seven days after the first two samples instead of few minutes later, did not modify the overall 349 

clinical sensitivity. 350 

 351 

In conclusion, these findings support the use of lower volume of blood, collected during the 352 

same visit, for qPCR testing purposes. 353 

 354 

Distribution of DTUs and parasitic loads 355 

TcV was the prevailing DTU, in agreement with findings reported by Martinez-Perez et al. 356 

(2016) (22), who found TcV in the 55.2% of Bolivian CD patients living in Madrid, Spain. 357 

However, TcIV, usually associated with the sylvatic cycle and occasional oral outbreaks (23, 358 

24) but found as the second predominant DTU in Bolivian patients (22), was not detected. 359 

 360 

Differences in qPCR positivity between Cochabamba or Tarija cohorts compared with Aiquile 361 

could be attributed to different distribution of parasite DTUs in these localities, such as it was 362 

observed for TcI (Table 2), although the low number of genotyped samples precluded 363 

assessment of the significance of this finding. 364 

 365 

Median parasitic loads were higher in Aiquile than in Cochabamba or Tarija, although the 366 

differences did not reach statistical significance (Table 1 and Fig 1). This could be due to the 367 

rural nature of the Aiquile area compared to the cities of Cochabamba and Tarija. In a recent 368 

study of pregnant women from Bolivia, it was observed that the differences in seroprevalence 369 

for T. cruzi infection were above all related to the area in which the patients lived most of 370 

their lives. Hyper-endemic hotspots were observed where prevalence surpassed 60% and one 371 

of the affected areas was the municipality of Aiquile, with 66% seroprevalence (25). In areas 372 

where vector infestation was higher, the seroprevalence of CD was also higher (25). 373 
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 374 

Dynamics of bloodstream parasite burden in chronic CD 375 

The monitoring of samples from patients treated with placebo in the DNDi-CH-E1224-001 376 

trial allowed follow-up of the natural history of human chronic T. cruzi infection in adult 377 

patients for a period of one year. The results showed that a proportion of patients had 378 

fluctuations of parasitic loads, which, in some cases, fell below the LOQ (1.53 par. eq./mL) of 379 

the qPCR method (13), and even gave non-detectable results, reflecting the fluctuations of 380 

parasitemia observed in chronic CD patients using traditional parasitological methods (24). 381 

Such findings underscore the need for serial sampling and qPCR replicates analysis for the 382 

evaluation of therapeutic failure in chronic CD. 383 

 384 

qPCR as surrogate marker of therapeutic failure in CD clinical trials 385 

The qPCR-based study of the DNDi-CH-E1224-001 clinical trial demonstrated that BZN was 386 

a better parasiticidal drug than E1224 in monotherapy, and that in turn, E1224 HD had higher 387 

efficacy than the other E1224 regimens (Fig 3). Treatment with BZN gave a better 388 

parasitological response in the urban cohorts of the DNDi-CH-E1224-001 trial than in the 389 

rural patients from the MSF-DNDi PCR sampling study, although no significant differences 390 

were found. This could be due to the more controlled conditions of treatment administration 391 

and follow-up in the DNDi-CH-E1224-001 trial, rather than to a higher risk of re-infection in 392 

the rural community of Aiquile, since the houses of all patients enrolled in the MSF-DNDi 393 

PCR sampling study were under entomological surveillance. 394 

 395 

Finally, this report demonstrates the usefulness of serial blood sampling and qPCR replicates 396 

analysis not only for enhancing the capacity to recruit chronic CD adult patients for clinical 397 

trials, in which the inclusion criteria require at least one qPCR positive result at baseline, but 398 
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more importantly for increasing sensitivity to detect treatment failure in this population. At 399 

the same time, this work highlights the importance of standardized methods for monitoring 400 

treatment response in chronic CD. 401 
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Table 1. Accumulative qPCR findings in pre-treated chronic Chagas disease patients from DNDi-CH-E1224-001 and MSF-DNDi PCR 552 

sampling optimization clinical studies, using one, two and three serial samples and two or three qPCR replicates per sample. 553 

Clinical 
Locality Parameters 

S1 S2 
S1+S2 

S3 
S1+S2+S3 

trial qPCR(1+2) qPCR(1+2)+3 qPCR(1+2) qPCR(1+2)+3 qPCR(1+2+3) 

DNDi-

CH-

E1224-

001 

CBBA 

N 294 294 289 289 294 74 294 

Positives 161 (54.8%) 178 (60.5%) 155 (53.6%) 171 (59.2%) 205 (69.7%) 19 (25.7%) 224 (76.2%) 

Quantifiables 31 (19.3%) 31 (17.4%) 26 (16.8%) 26 (15.2%) 44 (21.5%) 0 (0.0%) 44 (19.6%) 

Median [IQR] 

(par. eq./mL) 
2.6 [1.9-3.4] 2.6 [1.9-3.4] 2.7 [2.0-3.9] 2.7 [2.0-3.9] 2.6 [2.0-3.5] --- 2.6 [2.0-3.5] 

Tarija 

N 257 257 257 257 257 53 257 

Positives 153 (59.5%) 163 (63.4%) 142 (55.3%) 156 (60.7%) 190 (73.9%) 10 (18.9%) 200 (77.8%) 

Quantifiables 37 (24.2%) 37 (22.7%) 32 (22.5%) 33 (21.2%) 49 (25.8%) 0 (0.0%) 49 (24.5%) 

Median [IQR] 

(par. eq./mL) 
2.4 [2.0-3.4] 2.4 [2.0-3.4] 3.0 [2.4-3.6] 3.0 [2.2-3.6] 2.6 [2.0-3.6] --- 2.6 [2.0-3.6] 

MSF-

DNDi 
Sampling 

Study 

Aiquile 

N --- 196 --- 195 201 176 205 

Positives --- 144 (73.5%) --- 150 (76.9%) 171 (85.1%) 128 (72.7%) 185 (90.2%) 

Quantifiables --- 34 (23.6%) --- 40 (26.7%) 51 (29.8%) 29 (22.7%) 61 (33.0%) 

Median [IQR] 

(par. eq./mL) 
--- 2.4 [1.9-4.5] --- 2.9 [1.9-4.9] 2.8 [1.9-4.8] 3.2 [2.0-4.8] 3.0 [2.0-4.7] 

S1-3: samples 1-3; qPCR1-3: qPCR replicates 1-3; CBBA: Cochabamba; N: number of samples; IQR: interquartile range; par. eq./mL: parasite 554 

equivalents in 1 mL of blood. 555 

 556 
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Table 2. Direct identification of T. cruzi DTUs in blood samples of pre-treated chronic 557 

Chagas disease patients from DNDi-CH-E1224-001 and MSF-DNDi PCR sampling 558 

optimization clinical studies. 559 

Clinical trial Locality 
T. cruzi DTU 

TcI TcI+II/V/VI TcII/V/VI TcV/VI 

DNDi-CH-E1224-001 

CBBA-

Tarija 5 1 10 1 

MSF-DNDi Sampling Study Aiquile 1 1 11 1 

DTU: Discrete Typing Unit; CBBA: Cochabamba. 560 
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Table 3. qPCR findings during baseline and follow-up of the different groups of 562 

treatment of DNDi-CH-E1224-001 and MSF-DNDi PCR sampling optimization clinical 563 

studies. 564 

Clinical Group of 
Parameters 

BL 2M 4M 6M 12M 

trial treatment (S1+2+3) (S1+2+3) (S1+2+3) (S1+2+3) (S1+2+3) 

DNDi-

CH-

E1224-

001 

Placebo 

N 46 46 46 46 46 

Positives 46 (100%) 34 (73.9%) 37 (80.4%) 40 (87.0%) 36 (78.3%) 

Quantifiables 9 (19.6%) 15 (44.1%) 9 (24.3%) 14 (35.0%) 16 (44.4%) 

Median [IQR] 

(par. eq./mL) 
2.2 [2.0-4.1] 2.2 [1.9-4.3] 3.3 [2.1-4.1] 3.1 [2.1-3.7] 2.7 [1.9-5.3] 

E1224 LD 

N 48 48 48 48 47 

Positives 48 (100%) 5 (10.4%) 18 (37.5%) 32 (66.7%) 36 (76.6%) 

Quantifiables 14 (29.2%) 0 (0.0%) 6 (33.3%) 10 (31.3%) 12 (33.3%) 

Median [IQR] 

(par. eq./mL) 
3.5 [2.6-7.0] --- 2.1 [1.9-2.5] 2.1 [1.7-2.4] 2.2 [2.1-4.3] 

E1224 SD 

N 45 45 44 43 45 

Positives 45 (100%) 4 (8.9%) 31 (70.5%) 33 (76.7%) 38 (84.4%) 

Quantifiables 9 (20.0%) 0 (0.0%) 8 (25.8%) 5 (15.2%) 12 (31.6%) 

Median [IQR] 

(par. eq./mL) 
2.3 [2.0-2.9] --- 2.5 [1.9-3.5] 2.2 [1.9-2.6] 2.8 [2.1-4.5] 

E1224 

HD 

N 42 42 41 41 41 

Positives 42 (100%) 7 (16.7%) 9 (22.0%) 14 (34.1%) 23 (56.1%) 

Quantifiables 11 (26.2%) 0 (0.0%) 0 (0.0%) 1 (7.1%) 6 (26.1%) 

Median [IQR] 

(par. eq./mL) 
2.5 [1.9-3.4] --- --- 1.8 2.0 [1.9-2.2] 

BZN 

N 44 44 43 43 44 

Positives 44 (100%) 3 (6.8%) 0 (0.0%) 2 (4.7%) 2 (4.5%) 

Quantifiables 11 (25.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Median [IQR] 

(par. eq./mL) 
2.1 [1.9-2.7] --- --- --- --- 

MSF-

DNDi 

Sampling 

Study 

BZN 

N 137 121 

--- 

115 116 

Positives 137 (100%) 28 (23.1%) 11 (9.6%) 6 (5.2%) 

Quantifiables 47 (34.3%) 0 (0.0%) 1 (9.1%) 0 (0.0%) 

Median [IQR] 

(par. eq./mL) 
2.8 [1.9-4.6] --- 2.2 --- 

BL: baseline; 2M, 4M, 6M and 12M: 2, 4, 6 and 12 months from the beginning of the study; 565 

S1-3: samples 1-3; LD, SD and HD: low, short and high dosages; BZN: benznidazole; N: 566 

number of samples; IQR: interquartile range; par. eq./mL: parasite equivalents in 1 mL of 567 

blood 568 
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 570 

Fig 1. Study diagram and schedule of qPCR assessments 571 

 572 

Fig 2. Distribution of parasitic loads in peripheral blood samples of pre-treated chronic 573 

Chagas disease patients from DNDi-CH-E1224-001 and MSF-DNDi PCR sampling 574 

optimization clinical studies. par. eq./mL: parasite equivalents in 1 mL of blood; CBBA: 575 

Cochabamba. 576 

 577 

Fig 3. Distribution of parasitic loads during baseline and follow-up of the different 578 

groups of treatment of DNDi-CH-E1224-001 and MSF-DNDi PCR sampling 579 

optimization clinical studies. A: E1224-Placebo arm; B: E1224-Low Dose arm; C: E1224-580 

Short Dose arm; D: E1224-High Dose arm; E: Benznidazole arm from the DNDi-CH-E1224-581 

001 trial; F: Benznidazole arm from the MSF-DNDi PCR sampling optimization study; par. 582 

eq./mL: parasite equivalents in 1 mL of blood; BL: baseline; 2M, 4M, 6M and 12M: 2, 4, 6 583 

and 12 months from the beginning of the study 584 

 585 

Fig4. Cumulative therapeutic failure during the follow-up of the different groups of 586 

treatment of DNDi-CH-E1224-001 and MSF-DNDi PCR sampling optimization clinical 587 

studies. A: E1224-Placebo arm; B: E1224-Low Dose arm; C: E1224-Short Dose arm; D: 588 

E1224-High Dose arm; E: Benznidazole arm from the DNDi-CH-E1224-001 trial; F: 589 

Benznidazole arm from the MSF-DNDi PCR sampling optimization study; S1-3: samples 1-3; 590 

* p< 0.05; ** p< 0.01; *** p< 0.001 591 

 592 
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