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Abstract

Classifying patients according to longitudinal measures, or trajectory classification, has become frequent in

clinical research. The k-means algorithm is increasingly used for this task in case of continuous variables

with standard deviations that do not depend on the mean. One feature of count and binary data modeled

by Poisson or logistic regression is that the variance depends on the mean; hence, the within-group

variability changes from one group to another depending on the mean trajectory level. Mixture

modeling could be used here for classification though its main purpose is to model the data. The

results obtained may change according to the main objective. This article presents an extension of the

k-means algorithm that takes into account the features of count and binary data by using the deviance as

distance metric. This approach is justified by its analogy with the classification likelihood. Two applications

are presented with binary and count data to show the differences between the classifications obtained

with the usual Euclidean distance versus the deviance distance.
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1 Introduction

An ever-increasing number of studies in epidemiology and clinical research are now carried out on
repeated or longitudinal measures. For example: (i) the detection of prostate cancer recurrence relies
on prostate specific antigen (PSA) levels which are longitudinally monitored after the first
radiotherapy;1 (ii) the detection of osteoporosis by regular measures of bone mineral density; (iii)
the analysis of the long-term immune recovery of HIV-infected and treated patients through
recurrent CD4 cell counts;2 (iv) the identification of profiles of juvenile delinquency by the use of
teacher reports of physical aggression by pupils aged 6–15.

Longitudinal data are not specific to the medical field. For example, in zoology, a better
understanding of differences between species can be obtained by comparing the changes in some
parameters over the life of the animals (e.g. the height). All these examples rely on the analysis of
time-dependent curves or trajectories. Examples of time-independent curves are mass spectra that
represent peptide-ion expression activities in function of their mass-to-charge. In oncology, these
curves are used to identify subtypes of tumors.

Two main reasons may motivate the analysis of longitudinal data. The first is the need for
modeling these longitudinal data for prediction purposes or to assess the impact of various
factors. The second (we focus on here) is an attempt to identify and describe patterns of change
over time, which requires classifying the patients into groups with similar changes over time
(or similar ‘‘trajectories’’).

Various methods dedicated to non-longitudinal data classification have been applied to trajectory
classification; e.g. support vector machines algorithms.3 Another example is the k-means algorithm,4

that was used to classify trajectories using different distances or dissimilarity metrics between
curves.5 The k-means algorithm corresponds to a non-parametric classification method: it
searches the classification of the data that minimizes a specific within-group distance metric.
There is no restriction on the distance metric to be used: depending on the objectives of the
classification and the nature of the data, some distance metrics may be more relevant than others;
however, the Euclidean distance metric is the most frequently used. kml, an R package, is an
implementation of k-means to longitudinal data.6 It enables the users to explore and exploit
several distance metrics such as Euclidean, Manhattan, or Fréchet metric.7 (As a reminder,
Fréchet distance between two trajectories may be seen as the minimum length of a leach that
would separate a master from his dog, each travelling along separate trajectories at different
speeds.) Graphical representations of the solutions are offered as well as different methods for
choosing the optimal number of groups. K-means have been used in various medical contexts for
trajectory classification, for example: (i) to identify metabolite trajectories after nutritional
challenges and analyze the interactions with some obesity risk genotypes;8 (ii) to identify groups
of phenotypes of children with similar respiratory/allergic symptom trajectories from birth to four
years old and analyze the associated risk factors;9 (iii) to identify trajectory groups of inattention
and hyperactivity to predict educational attainment in early adulthood.10 There are also applications
in psychology: the method was used to identify trajectories of conflict levels over 28 group-
counseling sessions and analyze the degree of correspondence between a developmental group
counseling theory and the conflict levels reported by group members.11 One limitation of k-means
with longitudinal data is that it requires measures in all individuals at all-time points.

Other methods, called sometimes functional data classification, have been developed specifically
for trajectory classification. They rely, for example, on filtering the data before classification to
reduce their dimension. The fclust R-package projects each curve onto a finite dimensional basis,
such as a natural cubic spline basis, and then clusters the basis coefficients.12 Functional principal
component analysis is another way of filtering curves before performing the classification according
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to the principal components (Funclust and FunHDCC R packages).13,14 A detailed review on
functional data classification can be found in a recent article by Jacques and Preda.14

However, the aforementioned methods are generally applied to continuous data. For example,
with k-means, the usual Euclidean distance metric is well-suited for continuous measures—even if it
is subject to assumptions detailed later in the article—but not for binary outcomes or count data,
cases in which the variance depends on the mean. Regarding count data, and assuming a Poisson
distribution, high count measures have high variances; hence, groups with globally high count values
are naturally more heterogeneous than groups with low count values. This fact cannot be taken into
account by common distance metrics. This problem matters not only for trajectory classification, but
also for classification of individuals on the basis of several non-continuous variables measured at a
single time point. For non-continuous data, either longitudinal or multi-dimensional, the
classification is often performed by mixture modeling.15–18 In the case of trajectory classification,
each individual trajectory is modeled by a mixture of a finite number of polynomials or spline
functions, the mixing proportions varying from one individual to another. Some methods assume
that there is no intra-group heterogeneity (e.g. proc Traj of SAS),19 whereas others allow for this
heterogeneity.20 However, the first objective of mixture modeling is not to classify data, but to model
them; for example, for inference purposes. There is a conceptual difference: classification
approaches, like k-means, try to classify individuals into groups that could really exist whereas
the mixture modeling approaches try to model trajectories by a mixture of group trajectories, the
group trajectories being only theoretical constructs defined to take into account the heterogeneity in
the data. These two different concepts do not necessarily lead to the same results.21,22 Methods for
classification of non-continuous data are thus needed.

This article takes one advantage of mixture modeling methods (i.e. the use of the likelihood) to
extend k-means algorithms to the cases of binary or count data with specific application to trajectory
classification. The deviance, which is proportional to minus twice the log-likelihood, is used as a
distance metric to take into account the features of such data. This approach is justified by its
connection with the classification likelihood. The implementation of this approach to count and
binary data is presented here, as well as the classification expectation maximization (CEM)
algorithm used to optimize the process. The article presents two examples that prove the
advantage of the deviance over the usual Euclidean distance metric: one example is about the
observance of antiretroviral treatments for HIV and the other about mosquito counts for malaria
control.

2 Theoretical background

The theoretical backgrounds about k-means and classification likelihood are presented within the
context of trajectory clustering even though they are not restricted to this context.

2.1 K-means

K-means4,23 is an unsupervised learning algorithm that classifies a dataset into a fixed and a priori
defined number of groups, k. Let yi denote the l measures of a variable over time for an individual i
(yij, j¼ 1, . . . , l). Within the context of trajectory clustering, k-means will define k centroids, or k
mean trajectories xh (xhj, j¼ 1, . . . , l; h¼ 1, . . . , k) and a partition P¼ (P1 , . . . ,Pk) of the n

individuals into k groups so that
Pk

h¼1

P
yi2Ph

d yi, xgi
� �

is minimum. d is a distance metric; for

example, the square function in the case of the Euclidean distance metric. K-means provides an
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optimal partition in terms of mean distance between each individual trajectory and the mean
trajectory of the group to which the individual belongs. Each mean trajectory is characterized by
l parameters xhj, j¼ 1, . . . , l, which correspond to the means of the measures of the hth group
at various time points.

The algorithm starts from an initial random partition (several possibilities are available, see
Genolini et al.6), calculates the mean trajectory per group, and updates the partition according to
the distance between each individual trajectory and each mean trajectory. This process is repeated
until there are no more changes in the partition. This is the most frequently used process; however,
more efficient k-mean versions have been also proposed.24

2.2 Mixture likelihood

In mixture modeling, instead of assigning each trajectory to a group, each trajectory is modeled by a
mixture of the mean trajectories associated with the groups.21 The likelihood of an individual
trajectory is then:

L yi
� �
¼
Xk
h¼1

�h f yi, hh
� �

hh is the set of parameters that characterizes the hth mean trajectory—for example, parameters of
polynomials or parameters of covariates that affect the mean trajectory—and f yi, hh

� �
is the

likelihood of trajectory yi under the hypothesis of belonging to the hth group. The likelihood
reflects the natural dispersion of individual trajectories around a mean trajectory. With
continuous data, it is the multivariate Gaussian distribution that is often chosen. The �h values
are mixing proportions; i.e. �1 represents the general influence of the first mean trajectory on each
individual trajectory. Parameters hh,�hð Þ are estimated by maximizing the likelihood (called mixture
likelihood) or the log-likelihood over all individuals:

lnL yð Þ ¼
Xn
i¼1

ln
Xk
h¼1

�hf yi, hh
� � !

ð1Þ

In this formula, an individual contributes to the likelihood of each of the groups. In return, the
predicted trajectory for an individual is a mixture of the mean trajectories of the groups.

In the calculation of f, Nagin16 considers that, conditional to the group membership, the
observations relative to each individual are independent. This assumption is similar to the one
considered in the standard random effect model that assumes that observations relative to each
individual are independent conditional on the individual’s random effect. So, the assumption of
conditional independence is not made at the same level. On the contrary, Muthén and Shedden20

uses an additional random effect model within the groups to take into account the remaining
serial dependence of the measures over time, resulting in what is called a ‘‘growth mixture
model’’. The assumption of conditional independence in Nagin’s method is stronger than in
Muthén’s method. However, the former has the advantage of not making the strong
assumption that the random effects are independently and identically distributed according to
the normal distribution.

4 Statistical Methods in Medical Research 0(0)
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2.3 Classification likelihood

In the classification likelihood approach, trajectories are assigned to groups.25 Let zih¼ 1 when the
ith trajectory belongs to the hth group and zero otherwise. The likelihood of an individual trajectory
i belonging to the hth group is L yi

� �
¼ f yi, hh

� �
. Over all individuals, the log-classification-likelihood

is given by:

lnCL yð Þ ¼
Xn
i¼1

Xk
h¼1

zih ln f yi, hh
� �� �

ð2Þ

In this formula, an individual contributes to the likelihood of only one group, group h to which he
belongs (zij¼ 0). In return, the predicted trajectory for an individual is the mean trajectory of the
group to which he belongs. Parameters hhð Þ as well as the indicator vectors z1, . . . , zn are estimated by
maximizing the aforementioned log-classification-likelihood.

In equation (2), proportions �h do not appear; they are implicitly supposed to be equal. This
constraint tends to yield groups with similar sample sizes.25 A more general version of classification
likelihood has been proposed to relieve this constraint:25

lnCL yð Þ ¼
Xn
i¼1

Xk
h¼1

zih ln �hð Þ þ ln f yi, hh
� �� �� �

Still, in equation (2), f can be calculated by assuming that the measures relative to each individual
are independent conditional to the group membership or by adding random effects to achieve the
assumption of conditional independence making thus the assumption that the random effects are
independently and identically distributed according to the normal distribution. In the following
sections, only the first approach will be used.

Within this context, the Euclidean distance being proportional to minus twice the log-
likelihood, maximizing the classification likelihood for trajectory classification is equivalent to
using k-means with Euclidean distance in case of continuous data, when: (1) a multivariate
Gaussian distribution with an identity covariance matrix is used for the classification likelihood,
(2) the proportions �h are constrained to be equal for all groups.26 By adding these proportions to
the optimization function of the k-means algorithm, the second constraint is no more necessary.
Thus, there is a clear connection between classification likelihood and k-means when the
assumption of conditional independence is made at the level of the group. To generalize this
statement, one has to recognize that the deviance is proportional to minus twice the log-
likelihood. Hence, the use of the deviance as distance metric in k-means leads to results
identical to those obtained by classification likelihood, the assumption of conditional
independence being made at the level of the group.

One natural extension of k-means algorithms is the use of the deviance as distance metric,
providing thus an alternative to mixture modeling in case of non-continuous data.

3 k-Means and the deviance distance metric for count and binary data

This section focuses on the theoretical benefit of using the deviance as distance metric in k-means for
count and binary data as well as the specific implementation of the k-means algorithm within this
context.

Subtil et al. 5
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3.1 Features of count and binary data

Contrarily to Gaussian measures, binary measures have a variance that, under the classical binomial
distribution assumption, depends on the mean. The variance of a binary event of mean � being equal
to � 1� �ð Þ, groups with proportions often close to 0.5 allow naturally more heterogeneity than
groups with proportions constantly close to zero or to one. For count measures, assuming a
Poisson distribution, the variance is equal to the mean �. Hence, groups with high mean counts
allow naturally more heterogeneity than groups with mean counts close to zero. This has
consequences on trajectory clustering.27

Let us consider two trajectories and let d be the Euclidean distance between them. Even when d is
high, these two trajectories may stem from the same group if the intra-group variance is high in this
region. On the contrary, even when d is very low, the trajectories may not stem from the same group
if the intra-group variance is very low in this region; e.g. the mean count values are close to 0. The
natural heterogeneity, or intra-group variance, and its variation according to the mean should then
be considered in the clustering process. This is not done when one uses k-means with the Euclidean
distance metric because this metric gives the same weight to equal distances between trajectories
whatever the mean value of the measures.

To tackle this issue, the deviance distance metric will be used in k-means for binary or count data
trajectories. To be consistent with the k-means algorithm with continuous data, each mean
trajectory will be characterized by l parameters �hj, one for each time point.

3.2 Deviance and binary or count measures

Binary data are classically supposed to have a binomial distribution. Hence, by using the binomial
deviance as metric, the distance between the individual trajectory of the ith individual and the mean
trajectory of the hth group is proportional to:

Xl
j¼1

yij ln �hj þ 1� yij
� �

ln 1� �hj
� �� �

where �hj is the proportion of events in group h at time j.
Now, let us consider the simple case of binary trajectories with only one measure per individual

and a group mean value � ¼ �1. Assuming that an individual belongs to this group, the deviance of
his measure � ¼ �2 can be calculated for different values of �1 and different Euclidean distances d
between the trajectory of this individual and the mean trajectory. The results are shown in Figure 1a.
When �1 is close to 0.5, the deviance is insensitive to the variations of d; i.e. the Euclidean distance
does not greatly influence group membership whereas it varies greatly when �1 gets close to zero or
to one. Hence, with binary data, minimizing the deviance provides trajectories with very different
distances to the mean trajectory within the same group when the mean trajectory is close to 0.5 but
favors small distances when the mean trajectory is close to zero or to one. This is in agreement with
the sampling variability of binary data.

The standard distribution for count data is the Poisson distribution. In this case, by using the
Poisson deviance, the distance between the individual trajectory of the ith individual and the mean
trajectory of the hth group is proportional to:

Xl
j¼1

yij ln �hj
� �
� �hj � ln yij!

� �� �

6 Statistical Methods in Medical Research 0(0)
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where �hj is the mean count in group h at time j. Assuming that an individual belongs to the group
with mean trajectory � ¼ �1, Figure 1b represents the deviance of his observation � ¼ �2 for different
Euclidean distances d between this individual and the mean trajectory. The deviance is less sensitive
to changes in d when the mean trajectory is high than when it is close to zero. Here again, the
deviance distance performs the clustering in agreement with the intra-group variance of count data.

This justifies the use of the deviance as distance metric for k-means. For simplicity, ‘‘deviance
distance metric’’ will be used herein even when proportions �h are not constrained.

3.3 The CEM algorithm

The partition of the data and the parameter estimates that are solutions of the classification
optimization problem are the ones that maximize the sum of the deviance, or maximize the log-
likelihood, over all individuals. Maximizing the classification likelihood can be a difficult task due to
the high dimension of the space to be explored (parameter space and all possible partitions of the
individuals). The CEM is an EM-type algorithm that solves iteratively the problem by alternating
between two phases: computing the estimates hh,�hð Þ given the partition and finding the partition of
the individuals given the parameter estimates.28 It adds a classification step to the EM algorithm,
which is the difference with mixture modeling.

An initial partition is given to initialize the algorithm. Then, the mth iteration of the algorithm
occurs as follows:

. E-step—for each individual, computes the posterior probability to belong to groups (pmih) given
the parameter estimates:

pmih ¼
�m�1h f yi, �

m�1
h

� �
Pk

h0¼1 �
m�1
h0 f yi, �

m�1
h0

� �
. C-step—assigns each individual to the group with the maximum posterior probability.
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Figure 1. Deviance of measures assuming that they stem from a group centered on �1, for different Euclidean

distances d between the measure and the mean of the group. (a) Binomial likelihood. (b) Poisson deviance.
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. M-step—estimates the parameters by maximum likelihood in the partitions given by C-step.

With the family of exponential distributions, the maximum likelihood estimators correspond to
moment estimators.29 Hence, �hj is estimated by the mean of the observations of the hth group at
time j whatever the type of data (continuous, binary, count). �h is estimated by the mean of the zih
values over all individuals. The algorithm stops when there is no more change in the groups between
two successive iterations.

Celeux and Govaert26 have shown that the CEM algorithm converges at a linear rate to a local
maximum when the initial partition is in the neighborhood of this local maximum (and when the
Hessian of the classification likelihood is negative at the local maximum). However, this does not
guarantee the convergence to the global maximum and is one of several pitfalls shared by the
k-means and the CEM algorithm. The result depends on the initial partition. One solution is to
run the algorithm on several initial partitions and keep the best solution.6 In the present work, the
best solution is defined as the one that gives the highest classification likelihood value or the smallest
sum of deviances.

Within the context of trajectory classification, the CEM algorithm is very similar to the classical
k-means algorithm when the assumption of conditional independence is made at the level of the
group and even equivalent when proportions �h are constrained to be equal. The benefit of the
deviance over a simple Euclidean distance metric is not obvious, especially with count data.
The results obtained with the two distance metrics will be compared herein by simulation and on
two examples.

4 Simulations

4.1 Design

Simulations were performed to assess the accuracy of the proposed deviance distance metric in terms
of classification and compare it to the traditional Euclidean distance.

Data were simulated considering three groups at 15 time points, with binary or count outcomes.
Two different simulation designs were used for binary data as well as for count data. The details on
the way the data were simulated are given in Appendix 1. The mean profiles of the three groups are
shown in Figure 2.

Eighty individual trajectories were simulated in each group. These were then classified using
k-means, first with the deviance distance metric then with the Euclidean distance metric. Also, for
each individual, the likelihood that he belongs to each group was calculated according to the true
group parameters used to simulate the data. Each individual was then classified into the group with
the highest likelihood. This classification was considered as the target classification; i.e. the best
achievable given the way the data were generated. Indeed, even if a trajectory was simulated from
one group, the obtained simulated trajectory may be closer to another group than to the true group
due to heterogeneity. Hence, because of measure heterogeneity, even a perfect classification method
would not achieve a 100% correct classification. This is why the percentages of correct classifications
using k-means with the deviance or the Euclidean distance metric were compared with the
percentage of correct classifications regarding the target classification. For each of the four
simulation designs (2 for binary data and 2 for count data), 80 trajectories were simulated
50 times and the derived trajectories classified according to each of the three classification
methods. Summary measures of accuracy were calculated per simulation design over the
50 repetitions.

8 Statistical Methods in Medical Research 0(0)
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4.2 Results

Table 1 presents, for each simulation design, summarized distributions of the differences in
percentages of correct classifications between classification methods.

For binary data, k-means with the deviance distance metric provided slightly better percentages
of correct classifications than k-means with the Euclidean distance metric (the differences between
the percentages were more often greater than zero; i.e. in favor of the first method).

For count data, k-means with the deviance distance metric provided results close to the target
classification; the differences between the percentages of correct classifications were at most 5%.
The disagreement was higher between the target classification and the classification obtained with
k-means and the Euclidean distance metric. Consequently, k-means with the deviance distance
metric provided better classification results than k-means with the Euclidean distance metric with
differences ranging from 3% to 10% according to the simulation design.

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0(a)

time

m
ea

n 
pr

ob
ab

ili
ty

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0(b)

time

m
ea

n 
pr

ob
ab

ili
ty

0 5 10 15

0

1

2

3

4(c)

time

m
ea

n 
nu

m
be

r 
of

 c
ou

nt
s

0 5 10 15

0

1

2

3

4(d)

time

m
ea

n 
nu

m
be

r 
of

 c
ou

nt
s

Figure 2. Mean trajectories used for the simulations. (a) Binary design 1. (b) Binary design 2. (c) Count design 1.

(d) Count design 2.

Subtil et al. 9

 at Yale University Library on September 11, 2014smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


XML Template (2014) [23.8.2014–10:13am] [1–18]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/140097/APPFile/SG-SMMJ140097.3d (SMM) [PREPRINTER stage]

5 Applications

5.1 Classification of African villages according to mosquito counts
over the year

Malaria is still a major public health issue in sub-Saharan Africa. Anopheles gambiae (M and
S forms) is one of the main malaria vectors in this region. The fight against malaria aims to
decrease the transmission of Plasmodium spp parasites to humans by the mosquito vectors.
A cluster-randomized controlled trial has compared the efficacies of various strategies of
decreasing this transmission in 28 villages of Southern Benin.30 Mosquitoes were collected by
human landing catches every six weeks between January and December 2009 (eight surveys of
two successive nights at four sites per village). The study did not show differences between the
strategies but high variations in the density of malaria vectors were observed over time and space.

Figure 3a shows the counts of A. gambiae (M and S forms) in the 28 villages over all surveys.
These counts were low at the beginning and at the end of the year, many villages having zero
mosquitoes collected, but there was an explosion during the rainfall season (Survey 3 to Survey 5).

The 28 villages were clustered into two groups using k-means with the Euclidean and Poisson
deviance distance metrics. The mean trajectories obtained with the two metrics as well as the
percentage of villages in each group are shown in Figure 3c and d. Whatever the distance metric,
there was one group of a few villages with a high increase in mosquito count during the rainfall
season (group 1) and another group with a moderate increase (group 2). Two villages changed group
with the change of distance metric (Figure 3b). These villages had a moderate increase in mosquito
count during the rainfall season but small counts at the beginning of the year. Their trajectories were
too distant from the mean trajectory of group 1 during the rainfall season; they were consequently
classified in group 2 by the Euclidean distance. However, with the Poisson deviance, the variance
was equal to the expected value. During the rainfall season, despite moderate increases in mosquito
counts, both villages could switch to group 1 because of the increase in heterogeneity allowed by the

Table 1. Simulation results: summaries of the distributions of the differences in the

percentages of correct classifications between methods.

Design and methods 1st quartile Mean 3 rd quartile

Binary design 1

Deviance/Target �0.133 �0.1164 �0.092

Euclidean/Target �0.219 �0.178 �0.145

Deviance/Euclidean 0.021 0.062 0.116

Binary design 2

Deviance/Target �0.185 �0.144 �0.113

Euclidean/Target �0.210 �0.171 �0.130

Deviance/Euclidean �0.003 0.028 0.054

Count design 1

Deviance/Target �0.017 �0.007 0.000

Euclidean/Target �0.054 �0.040 �0.026

Deviance/Euclidean 0.018 0.032 0.050

Count design 2

Deviance/Target �0.054 �0.031 �0.012

Euclidean/Target �0.211 �0.177 �0.046

Deviance/Euclidean 0.108 0.146 0.180
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Poisson deviance. At the beginning of the year, a very low heterogeneity was allowed in group 2 by
the Poisson deviance due to a high number of villages with very low mosquito counts, which
excluded the two villages from this group. This is why the villages switched from group 2 to
group 1 with the use of the Poisson deviance.

The above results were obtained without constraining a priori the proportions of individuals in
the groups to be equal; however, identical results were obtained with this constraint.

5.2 Classification of patients according to the adherence to the
antiretroviral therapy

The ISAARV project was launched in Senegal to provide highly active antiretroviral therapy to
HIV-positive patients.31,32 In this project, 404 patients were followed at least every two months to
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Figure 3. (a) Anopheles counts in the different villages over the surveys. (b) Villages that changed group according to

the distance metric (Euclidean or Poisson deviance). (c) Mean trajectories using the Euclidean distance. (d) Mean

trajectories using Poisson deviance.
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assess their adherence to the treatment and determine the causes of non-adherence. Here, adherence
was defined as the ratio of the number of tablets considered as taken to the number of prescribed
tablets. In this application, adherence was analyzed up to 91 months (the median follow-up of the
cohort). Data were not recorded for 74 patients, mainly because of early death. Besides,
51 additional patients were discarded from the analyses because they have participated less than
10 assessments. Adherence was then averaged over a 3-month period. Missing values for a period
were imputed using the copyMean method.6,33 A ‘‘good adherence’’ during each period was defined
as a mean adherence over 95%; this led to binary data.

The 279 patients were clustered into three groups using k-means with the Euclidean distance and
the binomial deviance. The mean trajectories with the two metrics as well as the percentages of
patients in each group are shown in Figure 4a and b. The results of the cross-classification using the
two distance metrics are shown in Table 2. Overall, the mean trajectories seemed similar with the two
distance metrics but the third mean trajectory was lower at the end of the follow-up with the
binomial deviance.

Eighteen patients switched from group 3 to group 1. The mean trajectory of these 18 patients is
shown in Figure 4c. Overall, their adherence was similar to that of group 1 or group 3 at the
beginning of the follow-up but, after four years, it was about 0.5. Using the Euclidean distance,
after four years, the third mean trajectory was the mean of some trajectories below 0.35 and some
others above 0.35, this included the 18 trajectories. During the classification step, patients below 0.35
were considered to be as distant from the mean trajectory as patients above 0.35. However, using the
binomial deviance, the variance of the observations below 0.35 was smaller than that above 0.35 and
less heterogeneity was allowed below than above 0.35. Consequently, the third mean trajectory was
attracted by patients below 0.35; this led to the switch of the 18 patients toward group 1.

The Euclidean distance gives the same weight to equal distances between trajectories whatever the
levels of these trajectories whereas the binomial deviance takes into account the fact that groups of
trajectories with probabilities close to zero or one are more stable than groups with probabilities
close to 0.5.

Figure 5 shows the results obtained when the proportions of individuals in the groups were a
priori supposed to be equal. These proportions had closer values between them than those shown in
Figure 4, which was expected according to the theoretical backgrounds. In comparison with the
analysis where the proportions were not a priori constrained to be equal, patients switched from
group 1 to group 3, which led to a higher third mean trajectory after four years. There was less
discrepancy between the Euclidean distance and the binomial deviance than in Figure 4. Hence, the a
priori use of a constraint on the proportions of patients in the groups may affect the groups and the
trajectories obtained.

The removal of 51 patients from the analysis due to insufficient number of measures (less than 10)
may have influenced the shape of the mean trajectories or the proportions of the patients in each
group. Hence, the aforementioned results may be different from those that would be obtained by an
analysis performed on the whole cohort. The figures and proportions presented should be analyzed
with caution.

6 Discussion

The present work intended to cluster count or binary measures using the deviance as a measure of
similarity, with a specific application to trajectory classification. The deviance considers that the
intra-group variance of such data changes naturally depending on the mean. The intra-group
variance is an essential point in clustering because the distance between two trajectories has to be
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Figure 4. Mean trajectories of adherence to treatment over time. (a) Euclidean distance metric. (b) Binomial

deviance metric. (c) Mean trajectory of patients that moved from group 3 to group 1.

Table 2. Cross-classification obtained using the Euclidean distance and the

binomial deviance with data on adherence to antiretroviral therapy over time.

Binomial deviance

Group 1 Group 2 Group 3

Euclidean distance

Group 1 165 6 0

Group 2 0 51 0

Group 3 18 2 37
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assessed with regard to the sampling variability. This issue is not often mentioned because clustering
is often performed on measures that are considered Gaussian with constant intra-group variance. In
this case, the k-means algorithm with the Euclidean distance may be appropriate to cluster the
trajectories, under the assumption of conditional independence between measures within each
group. However, caution should be taken because continuous measures do not always follow
Gaussian distributions. A gamma or an exponential distribution may be more appropriate, in
which case the variance is proportional to the square of the mean and the issue of intra-group
variance is raised again. Hence, the use of the deviance as a distance metric may be useful in some
cases of continuous data. In the two examples given here, the use of the deviance led to substantial
differences in the groups obtained versus those obtained with the simple Euclidean distance; the
differences were explained by the concept of intra-group variance.

With the family of exponential distributions, the CEM algorithm is equivalent to the k-means
algorithm when the proportions of individuals within groups are a priori assumed to be equal. Thus,
the present work about count and binary data can be extended to all generalized linear models,
especially gamma and exponential models. The deviance distance metric presented in this article was
implemented in the R package kmlCov.

Simulation results showed that, with count and binary data, the deviance distance metric tends to
give better classification results than the Euclidean distance though the difference is only moderate.
The variance of binary data can range from 0 to 0.25, whereas the variance of count data can range
from 0 to infinity depending on the mean. This is why the difference in classification performance
between the deviance distance metric and the Euclidean distance metric is greater with count data
than with binary data. It is also agreed that, in some cases—depending on the mean trajectories, the
number of individuals per group, or the intra-group variability—there would be no differences
between the Euclidean and the deviance distance metrics.

The use of the deviance as a distance metric with k-means is justified by its analogy with the
classification likelihood method. In fact, Govaert and Nadif34 have already proposed to cluster
binary data using the classification likelihood methodology; the present article extends their work
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Figure 5. Mean trajectories of adherence to treatment over time when the proportions of patients in the groups

are assumed a priori equal. (a) Euclidean distance. (b) Binomial deviance.
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to the case of longitudinal data. However, longitudinal data present the problem of serial
dependence between measures of the same individual. The validity of our approach in this
context relies on the assumption of conditional independence between measures within each
group. Hence, the classification of individuals into different subgroups is itself used to remove the
serial dependence between the measures of the same individual. This hypothesis was already made
by Nagin in mixture modeling of trajectory data. We recognize that, in some cases, the classification
itself may not remove all the serial dependence between the measures over time. Various methods
may be proposed to take into account the remaining serial dependence when the assumption of
conditional independence is made at the group level. One method consists in allowing for the
autocorrelation using ARMA autocorrelation functions. Another method consists in adding
random effects inside each group; it was proposed by Muthén in mixture modeling. However, the
benefit of taking into account this serial dependence has not been analyzed yet in terms of
classification performance; this would be a useful work. Another useful work would be to
compare, on longitudinal data, the results of classification models with those of mixture models
in terms of classification. Regarding the constraint on the proportions of individuals in the groups,
assuming a priori that these proportions are equal is often difficult to justify, but this is what is done
by the k-means algorithm. In the adherence to treatment application, making this assumption led to
groups with more even sizes than without making it. Hence, on the basis of the present work, a
particular attention should be paid to this assumption. However, a slight extension of the
optimization function in the k-means algorithm allowed relieving this hypothesis. Celeux and
Govaert21 argued that approaches assuming equal proportions are more parsimonious and less
initial-position dependent; however, the unrestricted approach is preferred when the mixing
proportions are extreme and the sample size is not very large.34

The choice of the number of groups was not the purpose of the present work and remains a
difficult task. This choice should be guided by a good knowledge of the specific study context.
Several summary indices have been proposed and their respective performances compared.35,36

However, most of these indices were developed for mixture models whose major aim is not
classification. The integrated classification likelihood-Bayesian information criterion (ICL-BIC),37

(based on the completed likelihood) or the normalized entropy criterion38 are classification-based
information criteria, and might be used in this context. The choice of the number of groups should
not rely entirely on statistical indices; there should be also a clinical rationale, especially in
classification likelihood where the latent groups are not theoretical constructs but should reflect
reality. Some articles or books give application guidance on this subject.16,39,40

The present article focuses on trajectory clustering. Other methods have been developed within
the context of mixture modeling of trajectories, with a lot of program implementations with various
features.19,41–43 The two approaches are similar; however, the former maximizes the classification
likelihood whereas the second maximizes the mixture likelihood. Comparing the results, it has been
shown, with Gaussian data, that classification likelihood does not generally lead to the same
parameter estimates and that the bias in parameter estimation persists asymptotically.44 The
distinction is mainly conceptual: mixture approaches aim to model the data whereas classification
approaches aim to cluster the data.

The connection between k-means algorithms dedicated to trajectory clustering and classification
likelihood will allow a lot of extensions. For the time being, kml is non-parametric over time and
calculates the mean of each group at different time points. This imposes having measures for all
patients at all fixed time points, which is exceptional. In the ISAARV study, this constraint led to the
removal from the analysis of 51 patients, which may have influenced the mean trajectories or the
proportions of patients in the groups. Some flexible functions may be used to model the biomarker

Subtil et al. 15

 at Yale University Library on September 11, 2014smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


XML Template (2014) [23.8.2014–10:13am] [1–18]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/140097/APPFile/SG-SMMJ140097.3d (SMM) [PREPRINTER stage]

change over time; e.g. polynomials with parameters estimated during the M-step of the CEM
algorithm by likelihood maximization. The use of parametric functions would allow dealing with
different numbers of measures at different time points and with values missing completely at random
or missing at random. Moreover, covariates may be added to the model and their effects estimated
during the M-step. For example, in the adherence to HIV treatment application, the effect of sex
could have been estimated.

In the field of mixture likelihood, a growing number of programs are developed to deal with more
features: consideration of heteroscedasticity,27 introduction of covariates that can change the
trajectories or influence group membership, etc. The deviance distance metric presented here
will be implemented in the kmlCov package. By putting k-means algorithms dedicated to
trajectory clustering into a likelihood context, the present work prepares for the incorporation of
such features.
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31. Desclaux A, Lanièce I, Ndoye I, et al. The Senegalese
antiretroviral drug access initiative. An economic, social,
behavioural and biomedical analysis. Paris: ANRS,
UNAIDS, WHO, 2004.
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Appendix 1

Binary design 1

The data were generated according to a binomial distribution with the following mean values for the
different groups and time points:

Group 1 : exp time=15þ uið Þ

Group 2 : exp �time=15þ uið Þ

Group 3 : exp �4� time=15þ uið Þ

time is the time point of the measurement (from 1 to 15) and ui is a random intercept for individual i,
sampled from a normal distribution with mean 0 and standard deviation 0.05 whatever the group.

Binary design 2

Data were generated according to a binomial distribution with the following mean values for the
different groups and time points:

Group 1 : exp 2þ uið Þ

Group 2 : exp 2� 0:23� time� 5ð Þ � I time � 5ð Þ þ uið Þ

Group 3 : exp 1� 4=5� timeþ 0:41� time� 5ð Þ � I time � 5ð Þ þ uið Þ
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time is the time point of the measurement (from 1 to 15) and ui is a random intercept for individual i,
sampled from a normal distribution with mean 0 and standard deviation 0.1 whatever the group.

Count design 1

Data were generated according to a Poisson distribution with the following mean values for the
different groups and time points:

Group 1 : exp uið Þ

Group 2 : exp 0:08� timeþ uið Þ

Group 3 : exp �0:2� timeþ uið Þ

time is the time point of the measurement (from 1 to 15) and ui is a random intercept for individual i,
sampled from a normal distribution with mean 0 and standard deviation 0.1 whatever the group.

Count design 2

Data were generated according to a Poisson distribution with the following mean values for the
different groups and time points:

Group 1 : exp 1� time=15þ uið Þ

Group 2 : exp 1� 0:2� timeþ uið Þ

Group 3 : exp 1� 0:2� timeþ 0:25� time� 7ð Þ � I time � 7ð Þ þ uið Þ

time is the time point of the measurement (from 1 to 15) and ui is a random intercept for individual i,
sampled from a normal distribution with mean 0 and standard deviation 0.1 whatever the group.
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