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Abstract 19 

Our objective was to evaluate the performance of HIV testing algorithms based on WHO 20 

recommendations, using data from specimens collected at six HIV testing and counselling sites 21 

in sub-Saharan Africa (Guinea, Conakry; Kitgum and Arua, Uganda; Homa Bay, Kenya; Douala, 22 

Cameroun; Baraka, Democratic Republic of Congo). A total of 2780 samples, including 1306 23 

HIV-positive, were included in the analysis. HIV testing algorithms were designed using 24 

Determine as a first test. Second and third rapid diagnostic tests (RDT) were selected based on 25 

site-specific performance, adhering where possible to the WHO-recommended minimum 26 

requirements of sensitivity and specificity of >99%. The threshold for specificity was reduced to 27 

98% or 96% if necessary. We also simulated algorithms consisting of one RDT followed by a 28 

simple confirmatory assay. The positive predictive values (PPV) of the simulated algorithms 29 

varied from 75.8%-100% using strategies recommended for high-prevalence settings; 98.7%-30 

100% using strategies recommended for low-prevalence settings; and 98.1%-100% using a rapid 31 

test followed by a simple confirmatory assay. Although we were able to design algorithms that 32 

met the recommended PPV of >99% in five of six sites using the applicable high prevalence 33 

strategy, options were often very limited due to sub-optimal performance of individual RDTs 34 

and to shared false-reactive results. These results underscore the impact of the sequence of HIV 35 

tests and of shared false-reactivity on algorithm performance.  Where it is not possible to identify 36 

tests that meet WHO-recommended specifications, the low-prevalence strategy may be more 37 

suitable.   38 
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Introduction 39 

HIV rapid diagnostic tests (RDTs) are the main diagnostic tools for HIV screening and diagnosis 40 

in resource-constrained settings (1). Given the potential for severe medical, psychological and 41 

social impacts of HIV misdiagnosis and evidence of elevated false positive results from some 42 

settings, it is imperative that HIV diagnosis is confirmed to be both sensitive and specific (2).  43 

In 2012 and 2015, the World Health Organization (WHO) published revisions of the HIV testing 44 

guidelines with different recommendations for low (<5%) and high (≥5%) HIV prevalence 45 

settings (1, 3, 4). These recommendations call for the sequential use of up to three different 46 

serological assays, including RDTs, for final HIV diagnosis. Whereas a first non-reactive test 47 

result is sufficient to provide a final negative results in both settings, two or three reactive assays 48 

are needed to provide a final HIV-positive results in high and low-prevalence settings, 49 

respectively (Figure 1). The guidelines stipulate that each of the three RDTs should have a 50 

sensitivity of at least 99%, while for specificity the first RDT should have at least 98% and the 51 

second and third RDTs at least 99%; overall the combination should be designed to minimize the 52 

potential for shared false-reactivity. Different strategies for high- and low-prevalence settings 53 

were developed based on mathematical models using three theoretical assays assumed to meet 54 

the criteria described above to achieve an overall positive predictive value (PPV) of at least 99% 55 

(1). To date, however, these recommendations and the performance of the resulting algorithms 56 

have not been validated using real data from different field contexts.  57 

Several factors could influence the design and performance of these algorithms. Although WHO-58 

prequalified HIV RDTs met the minimum recommended sensitivity and specificity in the 59 

prequalification evaluations, several reports from different countries indicate much poorer 60 

performance in real-world settings (5–12). Moreover, little is known about shared false-reactivity 61 
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among different RDTs (13). The use of the same antigen preparations to produce different tests, 62 

which is occurring with increasing frequency due to re-branding or re-labelling arrangements 63 

among test manufacturers (1), can lead to shared cross-reactivity, though this may not be the 64 

only cause. Even low levels of shared cross-reactivity, or marginally substandard performance 65 

by one RDT, could have a meaningful impact on the performance of an algorithm.   66 

Given concerns about false positivity raised by previous findings, over the period of 2011-2015 67 

we conducted an evaluation of eight HIV RDTs and two simple confirmatory assays 68 

differentiating antibodies against several viral proteins (14). We used specimens collected at six 69 

HIV testing and counselling (HTC) centers in sub-Saharan Africa, the most affected region by 70 

HIV/AIDS with approximately 70% of the total number of people living with HIV worldwide 71 

(15). Consistent with the aforementioned reports (5–12), this study revealed lower-than-expected 72 

specificity for most of the tests and important variations by specimen origin (14). Here, we have 73 

used these data to validate the performance of simulated algorithms developed according to the 74 

latest WHO recommendations. Additionally, we explored the possibility of using algorithms 75 

incorporating simple confirmatory assays that could be suitable for use in low- and middle-76 

income countries.  77 

 78 

Methods 79 

Study setting  80 

Samples collected at voluntary or provider-initiated HTC service programs in six public health 81 

care clinics and hospitals in Sub-Saharan Africa between August 2011 and January 2015 were 82 

used for this study: the Centre Communautaire Matam in Conakry, Guinea; Madi Opei Clinic 83 
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and Kitgum Matidi Clinic in Kitgum, Uganda; Homa Bay District Hospital in Homa Bay, 84 

Kenya; Arua District Hospital in Arua, Uganda; Nylon Hospital in Doula, Cameroun; and 85 

Baraka Hospital in Baraka, South-Kivu, DRC. The details of the HIV testing algorithm used at 86 

each site is provided elsewhere (16). A minimum of 220 positive and 220 negative specimens, as 87 

classified by the algorithm used on site, were prospectively collected as described previously 88 

(16). All frozen plasma samples were then sent to the AIDS reference laboratory at the Institute 89 

for Tropical Medicine (ITM), Antwerp, Belgium, for characterization with a standard reference  90 

algorithm (Figure 1) and for testing with eight RDTs and two simple confirmatory assays.   91 

 92 

Reference method for HIV diagnosis 93 

All plasma samples were tested at ITM using a fourth-generation ELISA (Vironostika
®

 HIV 94 

Uni-Form II Ag/Ab, bioMérieux, France) followed by a Line-Immunoassay (LIA, i.e. INNO-95 

LIA™ HIV I/II Score, Innogenetics NV, Ghent, Belgium and an antigen-enzyme-immunoassay 96 

(Ag-EIA, i.e. INNOTEST HIV Antigen mAb, Innogenetics NV, Ghent, Belgium) and in-house 97 

DNA PCR when applicable, as described in Figure 1.   98 

 99 

HIV rapid diagnostic tests 100 

All eight HIV RDTs and two simple confirmatory assays were performed at ITM on all collected 101 

plasma samples from the six study sites, as reported elsewhere (14). All tests were performed by 102 

six trained laboratory technicians. Each test was read by two technicians, who were blinded to 103 

the results of the other reader and to the reference standard result. When the two readers gave 104 

discordant results, a third reader was consulted to solve the discrepancy. The details of the tests, 105 

as well as their performance per origin of specimens in our evaluation, are presented elsewhere 106 

(14).  107 
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 108 

Simulated algorithms 109 

Results of the RDTs performed at ITM were used to construct simulated algorithms using the 110 

WHO-recommended testing strategies for high- (>5%) and low- (<5%) prevalence settings, as 111 

described in Figure 1 (A and B). We could not simulate the repetition of the tests for discordant 112 

RDT1+ RDT2- results, nor retesting 14 days later, as recommended by WHO. All simulations 113 

used the RDT Determine as the first test. For RDT2 and RDT3, we selected all assays that met 114 

WHO recommendations, i.e. sensitivity >99% and specificity >99%, based on their individual 115 

performance estimates, compared to the reference algorithm, per origin of specimens (14). For 116 

sites where fewer than two tests met these criteria, we expanded the criteria to tests that had 117 

specificity estimates >98%, or >96%. We also ensured that assays RDT2 and RDT3 had higher 118 

specificity than RDT1 in all the algorithms simulated here.  119 

In addition, we simulated a testing strategy using an RDT as screening test, followed by a simple 120 

confirmatory assay (Figure 1C). For the screening test we used all RDTs that met the WHO 121 

recommendations for the first assay, i.e. sensitivity >99% and specificity >98%.  122 

 123 

Statistical analysis  124 

STATA version 13.1 (StataCorp, College Station, Texas, USA) was used to carry out data 125 

analysis. 126 

As for any performance evaluation, results of the simulated algorithms were compared to those 127 

of the reference algorithm, considered as the gold standard. We performed an inverse-probability 128 

weighted analysis to adjust for the initial sampling strategy, which under-represented negative 129 

samples by the onsite algorithm. For each participant, the weight was calculated as the inverse of 130 

 on July 31, 2017 by guest
http://jcm

.asm
.org/

D
ow

nloaded from
 

http://jcm.asm.org/


7 

 

the probability of inclusion in the study, i.e. the total number of clients with a similar onsite 131 

result during the study period divided by the number of included participants with similar results. 132 

Since all tests included in this evaluation were antibody tests that are not expected to detect acute 133 

infections, we excluded samples classified as acute infections with the reference algorithm, i.e. 134 

positive with a fourth-generation EIA, negative or indeterminate with LIA and positive with the 135 

antigen test (Figure 1). We also excluded from all analyses samples with indeterminate results by 136 

the reference algorithm.  Samples with an inconclusive result with a specific simulated algorithm 137 

were excluded from the estimates of sensitivity, specificity and predictive values of this specific 138 

algorithm, and their number and proportion are reported separately.  139 

 140 

Ethics 141 

The study was approved by the MSF Ethical Review Board and by ethics committees in the five 142 

countries where the samples were collected. All participants provided written informed consent.  143 

 144 

Results 145 

From August 2011 to January 2015, a total of 2785 samples collected at the six HTC sites 146 

(between 437 and 500 samples at each site) were sent to the reference laboratory. The HIV 147 

positivity rate by site ranged from 8.0% to 37.1% (Table 1). More information on the 148 

characteristics of clients included in the study are provided elsewhere (16). Using the reference 149 

algorithm, 1306 were classified as HIV-positive (including one positive for HIV-2) and 1474 as 150 

HIV-negative. Three samples with inconclusive reference results and two classified as acute 151 

infections were excluded from the analysis.  152 
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The performance of the HIV RDTs and simple confirmatory assays individually and by origin of 153 

specimens is described elsewhere (14). Of a total of 438 specimens that gave at least one false 154 

reactive result, the majority gave a false-reactive result with only one of the eight RDTs (n=295), 155 

81 with two RDTs, 41 with three RDTs, 15 with four RDTs, four with five RDTs, and two with 156 

six RDTs.  All RDTs exhibited some shared false reactive results with each of the seven other 157 

RDTs, with the exception of SD Bioline and Stat-Pak (Table 2).  158 

For only one site, Conakry (Guinea), could we identify at least two RDTs to be used as second or 159 

third test with sensitivity and specificity estimates >99%, as recommended by WHO. Using the 160 

testing strategy for high-prevalence settings with Determine as the first test and these assays as 161 

second and third tests, the PPV of the algorithms ranged from 98.3%-100% (Table 3). For three 162 

other sites (Douala, Cameroun; Kitgum, Uganda; and Homa Bay, Kenya), only one test met the 163 

WHO criteria, necessitating the use of tests with specificity >98% as RDT2 and RDT3, and 164 

resulting in PPVs ranging from 92.7%-100%. For the remaining two sites (Arua, Uganda and 165 

Baraka, DRC), one test met the WHO criteria, but all others had specificities <98%, 166 

necessitating the use of tests with specificity between 96% and 98%. The PPV of the resulting 167 

algorithms ranged from 75.8%-99.6%. Detailed results are presented in Table 3.  168 

Using the WHO strategy for low-prevalence settings, most simulated algorithms showed PPVs 169 

>99%, even for the two sites (Arua, Uganda and Baraka, DRC) where tests with specificity 170 

between 96 and 98% were included in the algorithms (Table 4). The proportion of inconclusive 171 

results remained low at <1% for most algorithms, but rose to 2.5% at sites where tests with 172 

specificity between 96% and 98% were included in the algorithms.  173 

We also evaluated a simplified version of a reference algorithm, using a rapid test meeting 174 

criteria for RDT1 as screening assay followed by a simple confirmatory assay. The PPV of these 175 
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algorithms ranged from 98.1%-100%, with the proportion of inconclusive results ranging from 176 

0%-0.5% (Table 5).   177 

 178 

Discussion 179 

WHO-recommended HIV testing strategies were developed based on models using theoretical 180 

RDTs with high sensitivity and specificity and no shared cross-reactivity. Here, we have used the 181 

results of a large multi-center evaluation of individual RDTs to estimate the performance of HIV 182 

testing algorithms using real data from six sub-Saharan African HTC sites. To our knowledge, 183 

this is the first study that evaluates the performance of algorithms based on the new WHO 184 

recommendations; all other such studies published to date focus on strategies using either two 185 

tests or a third test as tiebreaker (7, 9, 11, 17–20). Though WHO has never recommended the use 186 

of a tiebreaker due to the associated risk of generating false-positive results, this strategy is still 187 

widely used and not adapted since in the different countries (21).  188 

Several algorithms simulated here based on the strategy for high-prevalence settings resulted in a 189 

PPV <99%, even when RDTs with high specificity were used as second and third tests, due to 190 

shared false-reactive results among the tests used. In particular, a general trend of shared false-191 

reactive results between Determine and Vikia could explain the finding that combinations using 192 

these two tests with samples from Conakry resulted in a sub-optimal PPV of 98.3%, despite the 193 

fact that each test used at this site had an estimated specificity of >99%. Although we could not 194 

identify a similar trend of shared false-reactive results between Determine and SD Bioline, the 195 

level of false-reactivity was high with samples from Kitgum, leading to a PPV of only 92.7% for 196 

algorithms using these tests for Kitgum despite the acceptable specificity of SD Bioline (98.6%) 197 

on specimens from this site. A larger sample size is needed to investigate whether this represents 198 
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a local phenomenon or a random occurrence. In the absence of reliable knowledge on the source 199 

of antigen preparations and of a good understanding of the mechanisms underlying false-reactive 200 

results, only raw data from RDT evaluation studies using samples from local sites can provide 201 

the necessary information to avoid shared false-reactive results. 202 

For sites where only one test had a specificity of >99% and tests with specificity between 96% 203 

and 98% had to be included in the algorithms, the PPV of algorithms using the strategy for high 204 

prevalence settings varied widely depending on the order of the second and third tests. In both 205 

sites (Arua, Uganda and Baraka, DRC), only algorithms using the highly specific test STAT-206 

PAK as the second test reached or approached the threshold, while all other combinations gave 207 

PPVs below 95%. These results underscore the importance of the order of the RDTs in the 208 

algorithm, and of using the test with the highest specificity as the second (and not third) test 209 

when employing a three-test strategy in the absence of two highly specific tests.   210 

The strategy recommended for low-prevalence settings, which requires three reactive RDTs to 211 

establish a diagnosis of HIV infection, generally led to algorithms with very high PPV. For 212 

Baraka, DRC, where none of the high-prevalence algorithms achieved a PPV ≥ 99%, this was 213 

the only strategy that reached the threshold. In addition, since this strategy considers a discordant 214 

result (RDT1+; RDT2-) as negative, it is important to ensure that the NPV, together with the 215 

PPV, is >99%, as it was for the algorithms simulated here. This suggests that the low-prevalence 216 

HIV testing strategy may be suitable for use not only in settings with low HIV prevalence, but 217 

wherever HIV RDTs are known to have specificity issues. 218 

We also propose a testing strategy that, similar to a reference algorithm, relies on a sensitive 219 

screening assay followed by a simple confirmatory assay. One of these confirmatory assays, the 220 

ImmunoComb, has shown good correlation with Western Blot in evaluations in the DRC and 221 
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Ethiopia when used to confirm a two-RDT algorithm positive result, but is no longer produced 222 

(11, 22). Another option, the Geenius assay, has generally shown performance results sufficient 223 

for recommending it as an alternative to existing confirmatory assays such as Western Blot or 224 

immunoblots (23–29).  However, here we found that the use of these confirmatory assays did not 225 

consistently ensure PPVs >99% in the different combinations tested, particularly for the two sites 226 

where RDTs showed high false-reactivity. Given the added complexity and cost of the Geenius 227 

confirmatory assay, we conclude that it does not compare favourably with the three-RDT 228 

combination recommended by WHO for use in these settings.  229 

One of the limitations of this study is that Determine was used as the first assay in all algorithms 230 

we simulated. We used Determine for the same reasons it is currently used as the first test in 231 

most algorithms: its relative low cost and very high sensitivity. Another limitation is that our 232 

sampling strategy under-represented negative clients according to the onsite algorithm, resulting 233 

in a collection of specimens that is not representative of the population screened. To account for 234 

this verification bias, we conducted a weighted analysis aimed at mitigating its effect. The 235 

inclusion of all specimens with inconclusive results from onsite testing might also explain the 236 

high proportion of false-reactive specimens in this study compared to other evaluations, 237 

including those for WHO pre-qualification. We believe, however, that these data reflect the 238 

reality of HIV testing at HTC sites. Nevertheless, although centralized testing in a reference 239 

laboratory had advantages for standardization and comparison of results, it had the disadvantage 240 

of not reproducing all aspects of field conditions. In particular, we could not reproduce repeat 241 

testing for clients with inconclusive results, which might have an impact on final performance of 242 

these algorithms.  Finally, we did not illustrate the use of these algorithms in low-prevalence 243 

settings, since all specimens came from sites that would classify as high prevalence. A simple 244 
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calculation using the sensitivity and specificity reported here, together with the prevalence in the 245 

setting of interest, could provide useful information on the expected PPV for such settings. In 246 

addition, since most of the low-prevalence algorithms achieved a PPV of 100%, which would 247 

not be affected by the prevalence, our data supports the recommended strategy for these settings. 248 

This attempt to illustrate the process and results of designing an HIV testing strategy using real 249 

data offers important lessons for navigating the various obstacles in the process. First, our data 250 

underscore the impact of shared false-reactivity on algorithms performance and show that this 251 

phenomenon affects most RDT combinations to different degrees. More transparent information 252 

from test manufacturers is needed on possible shared false-reactivity due to test re-branding or 253 

common sources of antigens. Moreover, results on shared false-reactive results from other 254 

studies using a standard panel for the evaluation of different assays would provide useful 255 

complementary information. Second, our results demonstrate that data from local evaluations is 256 

important for assessing diagnostic accuracy in the specific setting, although often not feasible 257 

(30). We also highlight the importance of the order of tests, particularly when using the strategy 258 

for high HIV prevalence settings, where the test with highest specificity should be used as the 259 

second rather than third assay. Finally, if sufficient information is available and these steps are 260 

followed, good RDT-based HIV testing algorithms can be designed, though sometimes only with 261 

the strategy recommended for low-prevalence settings. 262 
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TABLES 362 

Table 1. Demographic and clinical characteristics by study site 363 

    Guinea Cameroun Uganda Kenya Uganda DRC Total 

    Conakry Douala Kitgum Homa-Bay Arua Baraka   

Tested at site during study period 
 

      

 

Total N 2033 1239 3159 1003 2971 3610 14015 

 

Positive on site, n (%) 574 (28.2) 396 (32.0) 332 (10.5) 372 (37.1) 386 (13.0) 288 (8.0) 2348 (16.8) 

Included in the study 
 

      

 

Total N 446 462 437 500 443 497 2785 

 

Positive, n (%) 222* (49.8) 214 (46.3) 213 (48.7) 224 (44.8) 212 (47.9) 221 (44.5) 1306 (46.9) 

 

Negative, n (%) 224 (50.2) 247 (53.5) 222 (50.8) 276 (55.2) 230 (51.9) 275 (55.3) 1474 (52.9) 

 

Acute infection, n(%) 0 (0) 0 (0) 2 (0.5) 0 (0) 0 (0) 0 (0) 2 (0.1) 

 

Indeterminates, n(%) 0(0)  1 (0.2) 0 (0) 0 (0) 1 (0.2) 1 (0.2) 3 (0.1) 

Age and sex 
 

      

 

Median age (IQR) 29 (22-39) 31 (25-41) 30 (24-39) 30 (23-40) 29 (23-37) 30 (23-39) 30 (24-39) 

  Males, n (%) 132 (29.6) 163 (35.3) 176 (40.3) 201 (40.2) 213 (48.2) 177 (35.6) 1062 (38.2) 

 364 

 365 

Table 2. Number and proportion of shared false-reactive results using test A1 (in column) 366 

followed by A2 (in line) 367 

                                  A2              
A1                                   
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Determine (N=124) 42 (33.9)   11 (8.9) 26 (21.0) 46 (37.1) 6 (4.8) 29 (23.4) 9 (7.3) 23 (18.6) 

Uni-Gold (N=39) 11 (28.2) 11 (28.2)   10 (25.6) 4 (10.3) 1 (2.6) 18 (46.2) 5 (12.8) 5 (12.8) 

Genie Fast (N=102) 46 (45.1) 26 (25.5) 10 (9.8)   17 (16.7) 6 (5.9) 25 (24.5) 8 (7.8) 19 (18.6) 

Vikia (N=61) 11 (18.0) 46 (75.4) 4 (6.5) 17 (27.9)   6 (9.8) 15 (25.6) 3 (4.9) 10 (16.4) 

STAT-PAK  (N=10) 3 (30.0) 6 (60.0) 1 (10.0) 6 (60.0) 6 (60.0)   4 (40.0) 0 (0.0) 2 (20.0) 

INSTI (N=151) 86 (57.0) 29 (19.2) 18 (11.9) 25 (16.6) 15 (9.9) 4 (2.7)   18 (11.9) 18 (11.9) 

SD Bioline (N=43) 9 (20.9) 9 (20.9) 5 (11.6) 8 (18.6) 3 (7.0) 0 (0.0) 18 (41.9)   20 (46.5) 

First  Response (N=142) 87 (61.3) 23 (16.2) 5 (3.5) 19 (13.4) 10 (7.0) 2 (1.4) 18 (12.7) 20 (14.1)   

N represents the total number of false reactive by RDT A1 368 
The percentage in parenthesis indicates the proportion of false reactive by A2 among N.  369 
 370 

  371 
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Table 3. Simulated algorithms with Determine HIV-1/2 combined with other HIV RDTs when 372 

used in a serial 3-test algorithm for high prevalence (≥5%) settings. 373 

Specimen 

origin 

    Sensitivity Specificity PPV NPV Inconclusive 

2nd test 3rd test  % (95% CI) % (95% CI) % (95% CI) % (95% CI) 
n (adjusted 

%) 

Conakry, 

Guinea 

(N=446) 

Uni-Gold 

STAT-PAK 

100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 0 (0) 

Vikia 100 (98.4-100) 99.3 (98.2-99.8) 98.3 (95.5-99.4) 100 (98.4-100) 0 (0) 

SD Bioline 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 0 (0) 

Vikia 

Uni-Gold 

100 (98.4-100) 99.3 (98.2-99.8) 98.3 (95.5-99.4) 100 (98.4-100) 0 (0) 

STAT-PAK 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 0 (0) 

SD Bioline 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 0 (0) 

Uni-Gold 

SD Bioline 

100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 0 (0) 

Vikia 100 (98.4-100) 99.3 (98.2-99.8) 98.3 (95.5-99.4) 100 (98.4-100) 0 (0) 

STAT-PAK 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 0 (0) 

Douala, 

Cameroun 

(N=461) 

SD Bioline* STAT-PAK 100 (98.3-100) 100 (98.5-100) 100 (98.3-100) 100 (98.5-100) 2 (0.3) 

STAT-PAK SD Bioline* 100 (98.3-100) 99.6 (98.3-99.9) 99.1 (96.3-99.8) 100 (98.5-100) 1 (0.1) 

Kitgum, 

Uganda 

(N=435) 

Uni-Gold* 
STAT-PAK 

96.2 (77.8-99.5) 100 (98.4-100) 100 (98.3-100) 99.5 (96.8-99.9) 0 (0) 

SD Bioline* 100 (98.3-100) 99.1 (96.4-99.8) 92.7 (76.6-98.0) 100 (98.3-100) 0 (0) 

STAT-PAK 
Uni-Gold* 

96.2 (77.8-99.5) 100 (98.4-100) 100 (98.4-100) 99.5 (96.8-99.9) 0 (0) 

SD Bioline* 100 (98.3-100) 99.1 (96.4-99.8) 92.7 (76.6-98.0) 100 (98.3-100) 0 (0) 

Uni-Gold* 
SD Bioline* 

100 (98.3-100) 100 (98.3-100) 100 (98.3-100) 100 (98.3-100) 4 (1.3) 

STAT-PAK 100 (98.3-100) 100 (98.3-100) 100 (98.3-100) 100 (98.3-100) 4 (1.3) 

Homa bay, 

Kenya 

(N=500) 

Uni-Gold STAT-PAK* 99.6 (96.9-99.9) 99.7 (98.1-100) 99.6 (96.9-99.9) 99.7 (98.1-100) 0 (0) 

STAT-PAK* Uni-Gold 99.6 (96.9-99.9) 100 (98.7-100) 100 (98.7-100) 99.7 (98.1-100) 2 (0.4) 

Arua, 

Uganda 

(N=442) 

Uni-Gold** 
STAT-PAK 

100 (98.3-100) 99.1 (96.5-99.8) 95.0 (82.3-98.7) 100 (98.4-100) 1 (0.1) 

Vikia** 100 (98.3-100) 98.1 (95.3-99.2) 89.7 (77.5-95.7) 100 (98.4-100) 0 (0) 

Vikia** 
Uni-Gold** 

100 (98.3-100) 98.1 (95.3-99.2) 89.7 (77.5-95.7) 100 (98.4-100) 2 (0.8) 

STAT-PAK 100 (98.3-100) 99.9 (99.5-100) 99.6 (97.0-99.9) 100 (98.4-100) 2 (0.8) 

Uni-Gold** 
Vikia** 

100 (98.3-100) 99.1 (96.5-99.8) 95.0 (92.3-98.7) 100 (98.4-100) 6 (1.6) 

STAT-PAK 100 (98.3-100) 99.9 (99.5-100) 99.6 (97.0-99.9) 100 (98.4-100) 5 (1.6) 

Baraka, 

DRC 

(N=496) 

Uni-Gold** 

STAT-PAK 

100 (98.3-100) 99.0 (96.6-99.7) 89.2 (71.3-96.5) 100 (98.6-100) 3 (0.1) 

Vikia** 100 (98.3-100) 97.3 (94.5-98.7) 75.8 (60.2-86.7) 100 (98.6-100) 1 (0.0) 

SD Bioline** 100 (98.3-100) 99.5 (97.2-99.9) 94.3 (75.3-98.9) 100 (98.6-100) 3 (0.1) 

Vikia** 

Uni-Gold** 

100 (98.3-100) 97.2 (94.4-98.6) 75.8 (60.2-86.7) 100 (98.6-100) 6 (1.0) 

STAT-PAK 100 (98.3-100) 99.9 (99.6-100) 98.7 (96.1-99.6) 100 (98.6-100) 6 (1.0) 

SD Bioline** 100 (98.3-100) 99.5 (97.2-99.9) 94.3 (75.3-98.9) 100 (98.6-100) 6 (1.0) 

Uni-Gold** 

SD Bioline** 

100 (98.3-100) 99.0 (96.6-99.7) 89.2 (71.3-96.5) 100 (98.6-100) 3 (0.5) 

Vikia** 100 (98.3-100) 97.2 (94.4-98.7) 75.8 (60.2-86.7) 100 (98.6-100) 4 (0.5) 

STAT-PAK 100 (98.3-100) 99.9 (99.6-100) 98.7 (96.1-99.6) 100 (98.6-100) 3 (0.5) 

Uni-Gold** 

Vikia** 

100 (98.3-100) 98.9 (96.5-99.7) 89.2 (71.3-96.5) 100 (98.5-100) 18 (2.5) 

STAT-PAK 100 (98.3-100) 99.9 (99.6-100) 98.7 (96.1-99.6) 100 (98.5-100) 16 (2.4) 

SD Bioline** 100 (98.3-100) 99.5 (97.1-99.9) 94.3 (75.3-98.9) 100 (98.5-100) 19 (2.5) 

* RDT with specificity estimate comprised between 98.0% and 98.9% for this site 374 
** RDT with specificity estimate comprised between 96.0% and 97.9% for this site  375 
  376 
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Table 4. Simulated algorithms with Determine HIV-1/2 combined with other HIV RDT when 377 

used in a serial 3-test algorithm for low prevalence (<5%) settings. 378 

Specimen 

origin 

    Sensitivity Specificity PPV NPV Inconclusive 

2nd test 3rd test  % (95% CI) % (95% CI) % (95% CI) % (95% CI) 
n (adjusted 

%) 

Conakry, 

Guinea 

(N=446) 

Uni-Gold 

STAT-PAK 

100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 0 (0) 

Vikia 100 (98.4-100) 100 (98.3-100) 100 (98.4-100) 100 (98.3-100) 4 (0.5) 

SD Bioline 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 0 (0) 

Vikia 

Uni-Gold 

100 (98.4-100) 100 (98.3-100) 100 (98.4-100) 100 (98.3-100) 4 (0.5) 

STAT-PAK 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 0 (0) 

SD Bioline 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 0 (0) 

Uni-Gold 

SD Bioline 

100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 0 (0) 

Vikia 100 (98.4-100) 100 (98.3-100) 100 (98.4-100) 100 (98.3-100) 4 (0.5) 

STAT-PAK 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 0 (0) 

Douala, 

Cameroun 

(N=461) 

SD Bioline* STAT-PAK 100 (98.3-100) 100 (98.5-100) 100 (98.3-100) 100 (98.5-100) 1 (0.1) 

STAT-PAK SD Bioline* 99.5 (96.7-99.9) 100 (98.5-100) 100 (98.3-100) 99.8 (98.5-100) 2 (0.3) 

Kitgum, 

Uganda 

(N=435) 

Uni-Gold* 
STAT-PAK 

96.2 (77.8-99.5) 100 (98.4-100) 100 (98.3-100) 99.5 (96.8-99.9) 0 (0) 

SD Bioline* 100 (98.3-100) 100 (98.3-100) 100 (98.3-100) 100 (98.3-100) 4 (1.3) 

STAT-PAK 
Uni-Gold* 

96.2 (77.8-99.5) 100 (98.3-100) 100 (98.3-100) 99.5 (96.8-99.9) 0 (0) 

SD Bioline* 100 (98.3-100) 100 (98.3-100) 100 (98.3-100) 100 (98.3-100) 4 (1.3) 

Uni-Gold* 
SD Bioline* 

96.2 (77.8-99.5) 100 (98.3-100) 100 (98.3-100) 99.5 (96.8-99.9) 0 (0) 

STAT-PAK 96.2 (77.8-99.5) 100 (98.3-100) 100 (98.3-100) 99.5 (96.8-99.9) 0 (0) 

Homa bay, 

Kenya 

(N=500) 

Uni-Gold STAT-PAK* 99.6 (96.9-99.9) 100 (98.7-100) 100 (98.7-100) 99.7 (98.1-100) 1 (0.2) 

STAT-PAK* Uni-Gold 99.6 (96.9-99.9) 100 (98.7-100) 100 (98.7-100) 99.7 (98.1-100) 0 (0) 

Arua, Uganda 

(N=442) 

Uni-Gold** 
STAT-PAK 

100 (98.3-100) 100 (98.4-100) 100 (98.3-100) 100 (98.4-100) 2 (0.8) 

Vikia** 100 (98.3-100) 99.9 (99.5-100) 99.6 (97.0-99.9) 100 (98.4-100) 5 (1.6) 

Vikia** 
Uni-Gold** 

100 (98.3-100) 100 (98.4-100) 100 (98.3-100) 100 (98.4-100) 6 (1.6) 

STAT-PAK 100 (98.3-100) 100 (98.4-100) 100 (98.3-100) 100 (98.4-100) 1 (0.1) 

Uni-Gold** 
Vikia** 

100 (98.3-100) 100 (98.4-100) 100 (98.3-100) 100 (98.4-100) 2 (0.8) 

STAT-PAK 100 (98.3-100) 99.9 (99.5-100) 99.6 (97.0-99.9) 100 (98.4-100) 0 (0) 

Baraka, DRC 

(N=496) 

Uni-Gold** 

STAT-PAK 

99.6 (96.8-99.9) 99.9 (99.7-100) 99.6 (97.0-99.9) 99.9 (99.7-100) 5 (0.9) 

Vikia** 99.6 (96.8-99.9) 99.9 (99.6-99.9) 98.7 (96.1-99.6) 99.9 (99.7-100) 16 (2.4) 

SD Bioline** 100 (98.3-100) 100 (98.6-100) 100 (98.3-100) 100 (98.6-100) 3 (0.5) 

Vikia** 

Uni-Gold** 

99.6 (96.8-99.9) 99.9 (99.7-100) 99.1 (96.6-99.8) 99.9 (99.7-100) 18 (2.5) 

STAT-PAK 100 (98.3-100) 99.9 (99.7-100) 99.6 (97.0-99.9) 100 (98.6-100) 3 (0.1) 

SD Bioline** 100 (98.3-100) 99.9 (99.7-100) 99.6 (97.0-99.9) 100 (98.6-100) 3 (0.5) 

Uni-Gold** 

SD Bioline** 

99.6 (96.8-99.9) 100 (98.6-100) 100 (98.3-100) 99.9 (99.7-100) 6 (1.0) 

Vikia** 99.6 (96.8-99.9) 100 (98.6-100) 100 (98.3-100) 99.9 (99.7-100) 19 (2.5) 

STAT-PAK 100 (98.3-100) 100 (98.6-100) 100 (98.3-100) 100 (98.6-100) 3 (0.1) 

Uni-Gold** 

Vikia** 

99.6 (96.8-99.9) 99.9 (99.7-100) 99.1 (96.6-99.8) 99.9 (99.7-100) 5  (0.9) 

STAT-PAK 100 (98.3-100) 99.9 (99.7-100) 98.7 (96.1-99.6) 100 (98.6-100) 1 (0.0) 

SD Bioline** 100 (98.3-100) 100 (98.6-100) 100 (98.3-100) 100 (98.6-100) 4 (0.5) 

* RDT with specificity estimate comprised between 98.0% and 98.9% for this site 379 
** RDT with specificity estimate comprised between 96.0% and 97.9% for this site  380 
 381 

 382 

 on July 31, 2017 by guest
http://jcm

.asm
.org/

D
ow

nloaded from
 

http://jcm.asm.org/


21 

 

Table 5. Simulated algorithms with a rapid test used as screening test followed by a simple 383 

confirmatory test for reactive samples. 384 

Specimen 

origin 
Screening test 

Confirmatory 

test 

Sensitivity Specificity PPV NPV Inconclusive 

% (95% CI) % (95% CI) % (95% CI) % (95% CI) n (adjusted %) 

Conakry, 

Guinea 

(n=446) 

Determine 

Immunocomb 

Combfirm 

100 (98.4-100) 100 (98.3-100) 100 (98.4-100) 100 (98.3-100) 4 (0.5) 

Uni-Gold 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 0 (0) 

Vikia 100 (98.4-100) 100 (98.3-100) 100 (98.4-100) 100 (98.3-100) 3 (0.4) 

Stat-Pak 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 0 (0) 

INSTI 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 1 (0.1) 

SD Bioline 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 100 (98.4-100) 0 (0) 

Determine 

Geenius  

100 (98.4-100) 99.8 (98.8-100) 99.6 (96.9-99.9) 100 (98.3-100) 4 (0.5) 

Uni-Gold 100 (98.3-100) 100 (98.4-100) 100 (98.3-100) 100 (98.4-100) 0 (0) 

Vikia 100 (98.3-100) 99.7 (98.7-99.9) 99.2 (96.6-99.8) 100 (98.3-100) 3 (0.4) 

Stat-Pak 100 (98.3-100) 100 (98.4-100) 100 (98.3-100) 100 (98.4-100) 0 (0) 

INSTI 100 (98.3-100) 99.2 (94.6-99.9) 98.1 (87.5-99.7) 100 (98.4-100) 1 (0.1) 

SD Bioline 100 (98.3-100) 99.8 (98.8-100) 99.6 (97.1-99.9) 100 (98.4-100) 0 (0) 

Douala, 

Cameroun 

(n=461) 

Stat-Pak Immunocomb 

Combfirm  

99.5 (96.7-99.9) 99.8 (98.5-100) 99.5 (96.7-99.9) 99.8 (98.5-100) 1 (0.1) 

SD Bioline 100 (98.3-100) 100 (98.5-100) 100 (98.3-100) 100 (98.5-100) 1 (0.3) 

Stat-Pak 
Geenius 

99.5 (96.7-99.9) 99.4 (98.0-99.8) 98.6 (95.8-99.6) 99.8 (98.5-100) 0 (0.0) 

SD Bioline 100 (98.3-100) 99.8 (98.5-100) 99.5 (96.8-99.9) 100 (98.5-100) 1 (0.3) 

Kitgum, 

Uganda 

(n=435) 

SD Bioline 
Immunocomb 

Combfirm 
100 (98.3-100) 100 (98.4-100) 100 (98.3-100) 100 (98.4-100) 1 (0.4) 

SD Bioline Geenius 96.2 (77.8-99.5) 100 (98.3-100) 100 (98.3-100) 99.5 (96.8-99.9) 1 (0.4) 

Homa Bay, 

Kenya 

(n=500) 

Uni-Gold Immunocomb 

Combfirm  

99.6 (96.9-99.9) 100 (98.7-100) 100 (98.4-100) 99.7 (98.1-99.9) 2 (0.3) 

Stat-Pak 99.6 (96.9-99.9) 100 (98.7-100) 100 (98.4-100) 99.7 (98.1-99.9) 2 (0.4) 

Uni-Gold 
Geenius  

99.6 (96.9-99.9) 100 (98.7-100) 100 (98.4-100) 99.7 (98.1-99.9) 2 (0.3) 

Stat-Pak 99.6 (96.9-99.9) 100 (98.7-100) 100 (98.4-100) 99.7 (98.1-100) 2 (0.4) 

Arua, 

Uganda 

(n=442) 

Stat-Pak 
Immunocomb 

Combfirm  
100 (98.3-100) 99.9 (99.5-100) 99.6 (97.0-99.9) 100 (98.4-100) 1 (0.1) 

Stat-Pak Geenius  100 (98.2-100) 99.9 (99.5-100) 99.6 (97.0-99.9) 100 (98.4-100) 0 (0) 

Baraka, 

DRC 

(n=496) 

Stat-Pak 
Immunocomb 

Combfirm 
100 (98.3-100) 99.9 (99.7-100) 99.6 (97.0-99.9) 100 (98.7-100) 2 (0.1) 

Stat-Pak Geenius 100 (98.3-100) 99.9 (99.7-100) 98.7 (96.1-99.6) 100 (98.7-100) 0 (0) 

 385 
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Figure 1. HIV testing strategies used to simulate algorithms (A to C) and as reference testing 390 

algorithm (D).  391 
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