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Abstract

Population surveys for niacin deficiency are normally based on clinical signs or on biochemical measurements of urinary

niacin metabolites. Status may also be determined by measurement of whole blood NAD and NADP concentrations. To

compare these methods, whole blood samples and spot urine samples were collected from healthy subjects (n ¼ 2)

consuming a western diet, from patients (n ¼ 34) diagnosed with pellagra and attending a pellagra clinic in Kuito (central

Angola, where niacin deficiency is endemic), and from female community control subjects (n ¼ 107) who had no clinical

signs of pellagra. Whole blood NAD and NADP concentrations were measured by microtiter plate-based enzymatic assays

and the niacin urinary metabolites 1-methyl-2-pyridone-5-carboxamide (2-PYR) and 1-methylnicotinamide (1-MN) by HPLC.

In healthy volunteers, inter- and intra-day variations for NAD and NADP concentrations were much lower than for the urinary

metabolites, suggesting a more stable measure of status. However, whole blood concentrations of NAD and NADP or the

NAD:NADP ratio were not significantly depressed in clinical pellagra. In contrast, the concentrations of 2-PYR and 1-MN,

expressed relative to either creatinine or osmolality, were lower in pellagra patients and markedly higher following treat-

ment. The use of the combined cut-offs (2-PYR ,3.0 mmol/mmol creatinine and 1-MN ,1.3 mmol/mmol creatinine) gave a

sensitivity of 91% and specificity of 72%. In conclusion, whole blood NAD and NADP concentrations gave an erroneously

low estimate of niacin deficiency. In contrast, spot urine sample 2-PYR and 1-MN concentrations, relative to creatinine, were

a sensitive and specific measure of deficiency. J. Nutr. 137: 2013–2017, 2007.

Introduction

Pellagra is a disease caused by a severe dietary deficiency in
niacin (generic name for nicotinic acid and nicotinamide) and/or
tryptophan (which is metabolized to niacin) or by an inability to
absorb and process these nutrients. Diagnosis is normally based
on clinical signs, which include a characteristic dermatitis and
changes in the gastrointestinal tract and nervous system (1). How-
ever, the correct diagnosis may be overlooked in patients where
clinical signs are atypical or absent (2,3). Although outbreaks
are now rare, sporadic cases of pellagra are reported in chronic
alcoholics and in individuals taking medication affecting tryp-
tophan metabolism, such as isoniazid therapy for tuberculosis.

In 1990 and 2000, pellagra epidemics were documented in
Malawi and central areas of Angola (4–6). In these areas, the
pellagra outbreaks were associated with a high dietary depen-
dence on unfortified maize. Given that many people in southern

and central Africa are similarly dependent on unfortified maize,
it is likely that seasonal subclinical niacin deficiency is wide-
spread. The accurate biochemical diagnosis of niacin status is
also of increasing interest due to its possible association with
HIV-related conditions (7) and cancer (8).

Previous studies have assessed niacin status by the quantifica-
tion of the major urinary niacin metabolites 1-methylnicotinamide
(1-MN)8 and 1-methyl-2-pyridone-5-carboxamide (2-PYR), and
sometimes the more minor metabolite 1-methyl-4-pyridone-5-
carboxamide (9,10), in timed urine collections. Status is usually
expressed as the concentration ratio 2-PYR:1-MN or as the con-
centrations of the individual metabolites relative to creatinine
(10). However, it has been shown in human subjects consuming
controlled niacin diets that changes in 1-MN and 2-PYR concen-
trations, but not 2-PYR:1-MN, correlated with dietary niacin
intake, casting doubt on the utility of the ratio indicator (11,12).

In previous field studies, timed urine collections have been
used; however, these are often not practical due to compliance
issues and the difficulty of relocating individuals and house-
holds. Random spot urine sampling avoids these issues and has
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been suggested as an alternative (10,13,14). We previously showed
that in spot urine samples, the niacin metabolite ratio 2-PYR:
1-MN was highly variable due to the different excretion rates of
the 2 metabolites and was very dependent on recent dietary in-
take (15). Status was best described as the concentration of the
metabolites relative to creatinine.

An alternative method for assessing niacin status is the mea-
surement of the active coenzymes of niacin, NAD and NADP.
Erythrocyte NAD and NADP concentrations are, in principle, a
more direct measure of functional niacin status and have been
shown to respond to changes in niacin intake. In a dietary deple-
tion study, large decreases in erythrocyte NAD concentrations
were observed and these were reversed during dietary repletion
(16). Due to the relative stability of NADP concentrations, it has
been proposed that the NAD:NADP ratio may be a useful indi-
cator of niacin status (16–18).

Nicotinamide nucleotide metabolism has been investigated in
pellagra patients, consuming a staple diet of jowar (Sorghum
vulgare), in India. In contrast to the data from the dietary de-
pletion studies, this work showed no significant change in the
concentration of NAD or NADP during clinical pellagra. How-
ever, there was evidence of impaired synthesis due to a reduction
in the activity of nicotinic acid mononucleotide adenyl transfer-
ase (19–21). This somewhat surprising finding raised important
questions about the etiology of pellagra and appropriate meth-
ods for biochemical assessment, which have not subsequently
been answered. To address these questions, we developed an
HPLC method for the analysis of the urinary niacin metabolites
1-MN and 2-PYR (15) and a modified microtiter plate method,
initially described by Jacobson and Jacobson (18), for the
enzymatic determination of whole blood NAD and NADP.

We recently reported data on the use of urinary metabolite
excretion to assess the prevalence of pellagra and niacin defi-
ciency in a pellagra endemic area of Angola (22). Here, we present
data on whole blood NAD and NADP in healthy control sub-
jects, subjects with clinical signs of pellagra, and patients under-
going treatment. We discuss the relationship among NAD, NADP,
and other indicators and the implications for the biochemical
assessment of niacin status.

Subjects and Methods

Subjects. Three groups of subjects were included in this study. Two

healthy male volunteers, consuming a western-style diet, were recruited

in London for the indicative study of inter- and intra-day variability. Thirty-
four patients suffering from clinical pellagra and attending the treatment

clinic in Kuito, Central Angola, on 13 December 2004, were recruited to

the study. Cases were admitted to the clinic on the basis of an assessment

of clinical signs performed by local medical officers. In a representative
population survey in the security cleared areas of Kuito Municipality, Bie

Province, in December 2004, 107 women aged between 15 and 49 y were

recruited to act as community control subjects.

Ethical approval. Ethical approval for the surveys was obtained from

the Angolan Ministry of Health and a letter of support issued by the

ethical review board of the Institute of Child Health, London. Individual

informed consent was obtained from all participants before samples
were taken. No material benefits, other than feedback on their nutri-

tional and health situation, were offered to encourage participation.

Anthropometry and clinical signs and symptoms. Anthropometric

measurements were taken using standard equipment and methods (23).

Weight was measured to the nearest 100 g and height to the nearest

millimeter. Subjects were examined for clinical signs of niacin deficiency
by medically trained clinic staff. Subjects were defined as suffering from

pellagra if they showed bilateral dermatitis on 1 or more sun-exposed

areas, or Casal’s necklace, or a ‘‘butterfly’’ sign on the face. The subjects

were asked whether they had had any gastrointestinal (diarrhea) or
neurological signs of deficiency (headaches, depression, or insomnia) in

the previous 7 d.

Following diagnosis, patients were treated with a nicotinamide sup-

plement of 100 mg (Ucemine PP, UCB Healthcare) and a B-complex
tablet 3 times daily for 17 d. In addition, all patients received a weekly

food supplement of 400 g of a fortified blended food [corn-soy blend (6.2

mg niacin/100 g), oil, and sugar] for 3 wk. Families of pellagra patients

were also eligible for a food ration from the United Nations World
Food Program, which was distributed monthly for 3 mo. Patients were

required to return to the clinic once per week during their course of

treatment, which typically lasted for 6 wk, and at which they were given
more vitamin supplements and food rations.

Sample collection. Urine samples were collected in 100-mL disposable
cups (VWR International), transferred into 10-mL Monovette urine col-

lection tubes (VWR), and stored at 0–8�C. At the end of the day, the

urine samples were transferred into 2-mL Nalgene cryovials (VWR) and

frozen at –20�C.
Venous blood was collected using lithium heparin-coated 2-mL

Vacutainer tubes (BD) and stored in vaccine boxes at 4–8�C until the end

of each day. The blood was then thoroughly mixed and aliquoted (50 mL)

into 2 2-mL Nalgene cryovials. The aliquots were frozen at –20�C for
up to 2 wk before being transported on dry ice from Kuito to London

via Luanda. In London, urine and whole blood samples were stored

at 280�C until analysis.
Measurement of hemoglobin (Hb) was performed using a portable

Hemocue Photometer (HemoCue), which utilizes the azidemethemoglo-

bin principle.

To measure inter- and intra-day variations in niacin metabolites,
paired fasting early morning peripheral blood and urine samples were

collected from 2 subjects on 4 consecutive days. On d 4, another 3 non-

fasting samples were collected at 3-h intervals. In total, 7 paired samples

were collected from each subject. Peripheral blood was collected from
finger pricks, made using safety lancets, into lithium heparin-coated

Microtainer tubes (BD). The samples were aliquoted (50 mL) into 2-mL

Nalgene cryovials and stored at –80�C. Urine samples were collected as

above and stored at –80�C.

Urine analysis. Urine samples were analyzed by investigators who did

not know the clinical status of the individual. The urinary niacin metab-
olites 1-MN and 2-PYR were measured by ion-pairing reverse-phase

HPLC (15). Limits of detection for 1-MN and 2-PYR were 0.4 and 0.1

mmol/L, respectively, and limits of quantification were 2.6 and 0.5 mmol/L,
respectively. A urine quality control sample (n ¼ 47, analyzed for 9 d)

following purification and analysis had a 3.0% CV for 2-PYR (mean

concentration, 37.0 mmol/L; range, 34.8–39.4 mmol/L) and a 6.6% CV

for 1-MN (13.3 mmol/L; range, 11.6–16.0 mmol/L). Urine samples were
analyzed for creatinine (using Vitros CREA slides, Ortho-Clinical Diag-

nostics) and osmolality (using an Advanced Micro Osmometer Model

3300, Advanced Instruments) by Camelia Botna Laboratories.

Whole blood NAD and NADP concentrations. Whole blood samples

were analyzed by investigators who did not know the clinical status of

the individual. Analysis of whole blood for NAD and NADP was per-
formed using modified versions of the microtiter plate-based enzymatic

methods described by Jacobson and Jacobson (18) (the modified meth-

ods are described in detail in the online supporting material).
Limits of detection and quantification in whole blood (assessed using

the pure standards) for NAD were 750 and 2438 nmol/L and 750 and

1875 nmol/L for NADP, respectively. Upper limits, measured using the

pure standards, were equivalent to NAD and NADP concentrations of
34,613 nmol/L and 33,413 nmol/L, respectively, in whole blood (addi-

tional details of the assay performance are given in the online supporting

material).

Statistical analysis. Means and SD are presented in the text. All

statistical tests were performed in SPSS version 13.0 (SPSS) and EpiInfo
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 by O
liver Y

un on January 17, 2008 
jn.nutrition.org

D
ow

nloaded from
 

http://jn.nutrition.org


6.04d (CDC). Correlations were tested using the Pearson correlation test

and differences in means tested by ANOVA and Tamhane’s T2 post-hoc

test, which does not assume equal variance. Differences were considered
significant at P , 0.05. Assessment of inter- and intra-day variation was

by percent CV. To adjust for hematocrit variations between blood sam-

ples, the Hb concentrations were measured and their relationship to

NAD and NADP concentrations described by regression formulae. The
concentrations of NAD and NADP were adjusted using the following

formulae:

AdjNAD ¼ ½NAD�1 ð1518 3 ð14:1752½Hb�ÞÞ:

AdjNADP ¼ ½NADP�1 ð1272 3 ð14:1752½Hb�ÞÞ:

The niacin index (molar ratio) was calculated as [NAD]/[NADP] 3 100.

Results

Inter- and intra-day variation in NAD, NADP, 2-PYR, and

1-MN concentrations in healthy subjects. Variations in the
concentration of NAD, NADP, 2-PYR, and 1-MN were mon-
itored over a 4-d period in paired whole blood and urine samples
in 2 healthy volunteers (Fig. 1). Inter- and intra-day variations
for NAD and NADP were much less then those for the urinary
metabolites 2-PYR and 1-MN (Table 1).

Descriptive data on patients vs. nonpatient controls. The
characteristics of the pellagra patients have been previously
described (22). Of the 34 patients recruited, 11 patients were
attending for the first time and were classified as new untreated
cases. The other 23 had been receiving treatment for a period of

between 1 and 6 wk. The control women (n ¼ 107) showed no
clinical signs of pellagra and were aged between 15 and 49 y
(27.4 6 9.4 y). Their BMI was 21.13 6 3.25 (n ¼ 104) and their
Hb concentration 134 6 21 g/L (n ¼ 106).

Unadjusted NAD and NADP concentrations in whole blood
were paradoxically higher in pellagra patients than healthy con-
trols (Table 2). However, whole blood concentration depends on
the hematocrit of the sample and this artifact was removed when
the concentrations were expressed as the NAD:NADP ratio,
or when adjusted for the Hb concentration of the sample. The
NAD:NADP ratio did not differ between new admissions and
community controls or patients after treatment.

In contrast, the urinary concentrations of the niacin metab-
olites relative to creatinine were significantly reduced in new
admissions compared with community controls. Concentrations
of 2-PYR were 69% lower in new admissions (P , 0.001) and
1-MN concentrations were 61% lower (P ¼ 0.002). In patients
who had commenced treatment, urinary concentrations of 2-PYR
and 1-MN were 23 times (P ¼ 0.013) and 38 times (P ¼ 0.023)
greater, respectively, than those in the control subjects.

Taking a niacin index of ,100 as a cut-off (16), whole blood
NAD and NADP concentrations classified only 36% of new ad-
missions as niacin deficient. Using previously established urinary
metabolite excretion cut-offs (10) of 2-PYR ,4.0 mg/g creat-
inine (,3.0 mmol/mmol creatinine) and 1-MN ,1.6 mg/g creati-
nine (,1.3 mmol/mmol creatinine), both measures individually
identified 82% of new admissions as niacin deficient. However,
if the 2 urinary metabolite excretion cut-offs were used sequen-
tially, then 91% (10 of 11 patients) of new admissions were clas-
sified as deficient.

To assess the sensitivity and specificity of the biochemical mea-
sures against clinical diagnosis, data on the 11 newly admitted
pellagra patients were combined with that from the 95 control
subjects with complete datasets. Use of the urinary metabolite
cut-offs yielded a much greater sensitivity than the use of the
niacin index (Table 3). Using the combined urine metabolite cut-
offs [2-PYR ,4.0 mg/g creatinine (,3.0 mmol/mmol creatinine)
and 1-MN ,1.6 mg/g creatinine (,1.3 mmol/mmol creatinine)]
achieved the best sensitivity and reasonable specificity in iden-
tifying clinical pellagra in the study population. In comparison, a
low niacin index was an insensitive measure for the detection of
pellagra in this population.

As creatinine concentrations may be dependent on the nu-
tritional status of the subject, we investigated whether the use
of osmolality might be a more appropriate means to adjust for
urine concentration and the hydration status of the individual.
Osmolality and creatinine concentrations were correlated (r ¼
0.638; P , 0.001). However, there was no correlation between
creatinine concentration and BMI (r ¼ 20.001; P ¼ 0.990).

FIGURE 1 Variation in the concentration of whole blood NAD and

NADP concentrations (A) and niacin urinary metabolites, 1-MN and

2-PYR (B), in 2 healthy volunteers. Samples were collected over 4 d

and the results illustrate the relatively low variation in the concentra-

tions of NAD and NADP.

TABLE 1 Inter- and intra-day variations in the concentrations
of whole blood NAD and NADP and urinary 2-PYR
and 1-MN in 2 healthy male subjects

Analyte Subject 1 Subject 2 Subject 1 Subject 2

Inter-day1 % CV Intra-day2 % CV

NAD 9.9 7.2 7.7 4.2

NADP 9.3 7.7 7.1 3.4

2-PYR 16 32 45 13

1-MN 34 19 85 40

1 Measurements from the same time point on d 1–4 were used to calculate the inter-

day percent CV.
2 Intra-day percent CV was calculated using the 4 measurements taken on d 4.
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There was also no correlation between total metabolite excretion
and the NAD:NADP ratio when using creatinine- or osmolality-
adjusted metabolite concentrations. In this sample, the use of
osmolality had no apparent advantages over creatinine for adjust-
ing niacin metabolite concentrations.

Discussion

The most prominent finding of this work was that the ratio of
whole blood NAD and NADP concentrations were not signif-
icantly depressed in clinical pellagra, despite the inter- and intra-day
stability of the ratio and the individual metabolite concentrations
in 2 healthy volunteers. This counter-intuitive finding contrasts
with results from dietary depletion studies (16) but agrees with
earlier work on pellagra patients (19–21). In contrast to the un-
responsive nature of NAD and NADP, low excretion of urinary
niacin metabolites was shown to be a sensitive and specific indi-
cator of clinical pellagra in this study population.

Microtiter plate-based enzyme cycling assays were selected
for the analysis of NAD and NADP because of the small sample
volumes required and their suitability for analyzing large num-
bers of samples. Base and acid were used to extract total NAD,
NADH, NADP, and NADPH. The extracts were stored at 280�C
prior to analysis and were reportedly stable at 220�C for .2 y
(18). During analysis of the extract, NAD1 and NADP1 were
used for the oxidation of ethanol and isocitrate by the enzymes
alcohol dehydrogenase and isocitric dehydrogenase, respectively.

The reactions produced NADH and NADPH, which were reoxi-
dized by reduction of the dye thiazolyl blue tetrazolium bromide
via the electron transport reagent phenazine ethosulfate. Re-
duction of thiazolyl blue tetrazolium bromide converted it from
an initial yellow color to a blue formazan. The amount of blue
formazan produced was dependent on the quantity of NAD and
NADP present and was quantified by absorption measurement
at 570 nm.

The assays had low limits of detection and quantification
and these were less than the lower limits (;3500 nmol/L for
NAD and NADP) previously seen in study subjects consuming a
niacin-deficient diet (16). The upper limits for the assays were
sufficient to measure the majority of NAD and NADP concen-
trations, likely to be found in population samples, without fur-
ther dilution. Stability studies (see online supporting material)
showed venous whole blood samples to be most stable when
frozen; however, if thawed, cell lysis resulted in a slow decrease
in NADP and rapid loss of NAD. The samples were relatively
stable for a period of 7.5 h (the longest time that samples would
normally spend ‘‘in the field’’ during a survey) in an unfrozen
state between 5.5 and 37�C. Consequently, samples were main-
tained at 4–8�C in cool packs during collection and not frozen.
Finger prick blood sampling was considered as an alternative to
venous sampling and has been used under laboratory conditions
(24). However, from our experience in field surveys, hemolysis
was more likely to occur and this would have lead to NAD and
NADP depletion.

To investigate whether status changed with collection time,
paired peripheral whole blood and urine samples were collected
from 2 subjects over 4 consecutive days. Concentrations of whole
blood NAD and NADP (Fig. 1) were similar to those found by
other workers (24–26) and showed less change than the urinary
niacin metabolite concentrations (Table 1). The greater variation
in the urinary metabolite concentrations resulted from recent
dietary intake (15). We concluded that whole blood NAD and
NADP concentrations would give the most stable measurement
of status, because they varied least with collection time.

In pellagra patients, the excretion of urinary metabolites,
relative to creatinine, declined sharply, whereas the NAD:NADP
ratio did not change. Only 4 of 11 cases identified using clinical
signs had a niacin index ,100. In treated patients, there was a
dramatic increase in the concentration of urinary metabolites
but little change in the whole blood NAD:NADP ratio. This lack
of change in the NAD:NADP ratio contrasts with that in die-
tary depletion studies (16) and remains an enigma in need of

TABLE 2 Whole blood NAD and NADP and urinary metabolite concentrations in community controls
and newly admitted and treated pellagra patients1

Community controls New admissions Treated patients P

n 107 11 23

Whole blood

NAD, mmol/L 24.3b (23.0, 25.6) 29.7a (22.4, 37.0) 29.1a (25.0, 33.2) 0.005

NADP, mmol/L 19.6b (18.3, 20.8) 26.1a (21.3, 30.9) 24.4a (21.5, 27.4) ,0.001

Adjusted NAD, mmol/L 25.4 (24.3, 26.5) 26.5 (17.9, 35.2) 26.4 (23.1, 29.7) 0.747

Adjusted NADP, mmol/L 20.5 (19.5, 21.4) 23.5 (18.3, 28.7) 22.1 (20.0, 24.3) 0.087

Niacin index 126 (121, 130) 114 (95, 134) 120 (109, 131) 0.222

Urine

1-MN,2 mg/g creatinine 3.1b (2.6, 3.5) 1.2c (0.3, 2.1) 45.3a (14.3, 76.2) ,0.001

2-PYR,3 mg/g creatinine 7.6b (6.3, 8.9) 2.4c (1.0, 3.7) 55.2a (21.8, 88.7) ,0.001

1 Values are means (95% CI). Means in a row with superscripts without a common letter differ, P , 0.05.
2 To convert 1-MN from mg/g creatinine to mmol/mmol creatinine, multiply by 0.825.
3 To convert 2-PYR from mg/g creatinine to mmol/mmol creatinine, multiply by 0.743.

TABLE 3 Sensitivity and specificity of biochemical measures
in the detection of clinical pellagra1

Measure Sensitivity2 Specificity3

Positive
predictive value4

%

Low urine metabolites 90.9 (57.1, 99.5) 71.6 (61.3, 80.1) 27.0 (14.4, 44.4)

2-PYR ,4 mg/g creatinine 81.8 (47.8, 96.8) 75.8 (65.7, 83.7) 28.1 (14.4, 47.0)

1-MN ,1.6 mg/g creatinine 81.8 (47.8, 96.8) 78.9 (69.1, 86.4) 31.0 (16.0, 51.0)

Niacin index ,100 36.4 (12.4, 68.4) 88.4 (79.8, 93.8) 26.7 (8.9, 55.2)

1 Values are percentages (95% CI).
2 Sensitivity is the probability of a subject having a positive biochemical test result for

pellagra if exhibiting clinical signs.
3 Specificity is the probability of having a negative biochemical test if not exhibiting

clinical signs.
4 The positive predictive value is the probability of a subject having clinical signs for

pellagra if they had a positive biochemical test.
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explanation. It is likely that a number of factors are operating.
One possibility is that erythrocytes are not subject to as much
oxidative stress as sun-exposed skin. NAD concentrations as a
result do not fall as quickly and can be maintained by the avail-
able niacin, even while dermatitis is developing. Another possi-
bility is that there are genetic factors in the survey population
that allow NAD concentrations in some cell types (such as eryth-
rocytes) to be maintained at the expense of others (such as the
skin) during periods of niacin deficiency.

The control group used in this study consisted of women
from the local area, ;29% of whom had low niacin metabolite
excretion (22). Further work is recommended to obtain a ref-
erence dataset from populations where niacin deficiency is rare.

We conclude, from the data currently available, that the
NAD:NADP ratio cannot be used to diagnose clinical pellagra
and would lead to erroneously low estimates of niacin deficiency
if used in population surveys. Quantification of the urinary me-
tabolites remains the method of choice for determining the epi-
demiology of niacin deficiency.
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