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Abstract12

Real-time forecasts based on mathematical models can inform criti-13

cal decision-making during infectious disease outbreaks. Yet, epidemic14

forecasts are rarely evaluated during or after the event, and there is15

little guidance on what the best metrics for assessment are. Here,16

we propose to disentangle different components of forecasting ability17

by using metrics that separately assess the calibration, sharpness and18

unbiasedness of forecasts. We used this approach to analyse the per-19

formance of weekly forecasts generated in real time in Western Area,20

Sierra Leone, during the 2013–16 Ebola epidemic in West Africa. We21

found that probabilistic calibration was good at short time horizons22

but deteriorated for long-term forecasts. This suggests that forecasts23

provided usable performance only a few weeks ahead of time, reflecting24

the high level of uncertainty in the processes driving the trajectory of25

the epidemic. Comparing the semi-mechanistic model we used during26

the epidemic to simpler null models showed that the our model per-27

formed better with respect to probabilistic calibration, and that this28

would have been identified from the earliest stages of the outbreak.29

As forecasts become a routine part of the toolkit in public health,30

standards for evaluation of performance will be important for assess-31

ing quality and improving credibility of mathematical models, and for32

elucidating difficulties and trade-offs when aiming to make the most33

useful and reliable forecasts.34
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Introduction35

Forecasting the future trajectory of cases during an infectious disease out-36

break can make an important contribution to public health and interven-37

tion planning. Infectious disease modellers are now routinely asked for38

predictions in real time during emerging outbreaks (Heesterbeek et al.,39

2015). Forecasting targets usually revolve around expected epidemic du-40

ration, size, or peak timing and incidence (Goldstein et al., 2011; Nsoesie41

et al., 2013; Yang et al., 2015; Dawson et al., 2015), geographical distribu-42

tion of risk (Lowe et al., 2014), or short-term trends in incidence (Johansson43

et al., 2016; Liu et al., 2015). Despite the increase in activity, however,44

forecasts made during an outbreak is rarely investigated during or after the45

event for their accuracy.46

The growing importance of infectious disease forecasts is epitomised by47

the growing number of so-called forecasting challenges. In these, researchers48

compete in making predictions for a given disease and a given time hori-49

zon. Such initiatives are difficult to set up during unexpected outbreaks,50

and are therefore usually conducted on diseases known to occur seasonally,51

such as dengue (Johansson et al., 2016; National Oceanic and Atmospheric52

Administration, 2017; Centres for Disease Prevention and Control, 2017)53

and influenza (Biggerstaff et al., 2016). The Ebola forecasting challenge was54

a notable exception, triggered by the 2013–16 West African Ebola epidemic55

and set up in June 2015. Since the epidemic had ended in most places at56

that time, the challenge was based on simulated data designed to mimic the57

behaviour of the true epidemic instead of real outbreak data (Viboud et al.,58

2017).59

Providing accurate forecasts during emerging epidemics comes with par-60

ticular challenges as uncertainties about the processes driving growth and61

decline in cases, in particular human behavioural changes and public health62

interventions, can preclude reliable long-term predictions (Moran et al.,63

2016; Funk et al., 2017b). Short-term forecasts with an horizon of a few64

generations of transmission (e.g., a few weeks in the case of Ebola), on the65

other hand, can yield important information on current and anticipated66

outbreak behaviour and, consequently, guide immediate decision making.67

The most recent example of large-scale outbreak forecasting efforts was68

during the 2013–16 Ebola epidemic, which vastly exceeded the burden of69

all previous outbreaks with almost 30,000 reported cases of the disease, re-70

sulting in over 10,000 deaths in the three most affected countries: Guinea,71

Liberia and Sierra Leone. During the epidemic, several research groups pro-72

vided forecasts or projections at different time points, either by generating73

scenarios believed plausible, or by fitting models to the available time series74

and projecting them forward to predict the future trajectory of the out-75
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break (Fisman et al., 2014; Lewnard et al., 2014; Nishiura and Chowell,76

2014; Rivers et al., 2014; Towers et al., 2014; Camacho et al., 2015b; Dong77

et al., 2015; Drake et al., 2015; Merler et al., 2015; Siettos et al., 2015; White78

et al., 2015). (Chretien et al., 2015; Chowell et al., 2017). One forecast that79

gained attention during the epidemic was published in the summer of 2014,80

projecting that by early 2015 there might be 1.4 million cases (Meltzer et al.,81

2014). While this number was based on unmitigated growth in the absence82

of further intervention and proved a gross overestimate, it was later high-83

lighted as a “call to arms” that served to trigger the international response84

that helped avoid the worst-case scenario (Frieden and Damon, 2015).85

Traditionally, epidemic forecasts are assessed using aggregate metrics86

such as the mean absolute error (MAE, Chowell, 2017; Pei and Shaman,87

2017; Viboud et al., 2017). These, however, often only assess how close the88

most likely or average predicted outcome is to the true outcome. The ability89

to correctly forecast uncertainty, and to quantify confidence in a predicted90

event, is not assessed by such metrics. Appropriate quantification of uncer-91

tainty, especially of the likelihood and magnitude of worst case scenarios,92

is crucial in assessing potential control measures. Methods to assess proba-93

bilistic forecasts are now being used in other fields, but are not commonly94

applied in infectious disease epidemiology (Gneiting and Katzfuss, 2014;95

Held et al., 2017). It is worth noting that good predictive ability need not96

coincide with good fit, as statistical evidence may not translate into forecast97

capability because of model uncertainty and noisy, incomplete data.98

We produced weekly sub-national real-time forecasts during the Ebola99

epidemic, starting on 28 November 2014. These were published on a dedi-100

cated web site and updated every time a new set of data were available (Cen-101

ter for the Mathematical Modelling of Infectious Diseases, 2015). They were102

generated using a model that has, in variations, been used to forecast bed103

demand during the epidemic in Sierra Leone (Camacho et al., 2015b) and104

the feasibility of vaccine trials later in the epidemic (Camacho et al., 2015a;105

Camacho et al., 2017). During the epidemic, we provided sub-national fore-106

casts for three most affected countries (at the level of counties in Liberia,107

districts in Sierra Leone and prefectures in Guinea).108

Here, we apply assessment metrics that elucidate different properties of109

forecasts, in particular their probabilistic calibration, sharpness and bias.110

Using these methods, we retrospectively assess the forecasts we generated111

for Western Area in Sierra Leone, an area that saw one of the greatest112

number of cases in the region and where our model informed bed capacity113

planning.114
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Materials and Methods115

Data sources116

Numbers of suspected, probable and confirmed cases at sub-national levels117

were initially compiled from daily Situation Reports (or SitReps) provided118

in PDF format by Ministries of Health of the three affected countries during119

the epidemic (Camacho et al., 2015b). Data were automatically extracted120

from tables included in the reports wherever possible and otherwise man-121

ually converted by hand to machine-readable format and aggregated into122

weeks. From 20 November 2014, the World Health Organization (WHO)123

provided tabulated data on the weekly number of confirmed and probable124

cases. These were compiled from the patient database, which was contin-125

uously cleaned and took into account reclassification of cases avoiding po-126

tential double-counting. However, the patient database was updated with127

substantial delay so that the number of reported cases would typically be128

underestimated in the weeks leading up to the date of the forecast. Because129

of this, we used the SitRep data for the most recent weeks until the latest130

week in which the WHO case counts either equalled or exceeded the SitRep131

counts. For all earlier times, the WHO data were used.132

Transmission model133

We used a semi-mechanistic stochastic model of Ebola transmission de-134

scribed previously (Camacho et al., 2015b; Funk et al., 2017a). Briefly,135

the model was based on a Susceptible-Exposed-Infectious-Recovered (SEIR)136

model with fixed incubation period of 9.4 days (WHO Ebola Response Team,137

2014), following an Erlang distribution with shape 2. The country-specific138

infectious period was determined by adding the average delay to hospitalisa-139

tion to the average time from hospitalisation to death or discharge, weighted140

by the case-fatality rate. Cases were assumed to be reported with a stochas-141

tic time-varying delay. On any given day, this was given by a gamma distri-142

bution with mean equal to the country-specific average delay from onset to143

hospitalisation and standard deviation of 0.1 day. We allowed transmission144

to vary over time, in order to be able to capture behavioural changes in the145

community, public health interventions or other factors affecting transmis-146

sion for which information was not available at the time. The time-varying147

transmission rate was modelled using a daily Gaussian random walk with148

fixed volatility (or standard deviation of the step size) which was estimated149

as part of the inference procedure (see below). To ensure the transmission150

rate remained positive, we log-transformed it, so that its behaviour in time151
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can be written as152

d log βt = σdWt (1)153

where βt is the time-varying transmission rate, Wt is the Wiener process154

and σ the volatility of the transmission rate. In fitting the model to the155

time series of cases we extracted posterior predictive samples of trajectories,156

which we used to generate forecasts.157

Model fitting158

Each week, we fitted the model to the available case data leading up to159

the date of the forecast. Observations were assumed to follow a negative160

binomial distribution, approximated as a discretised normal distribution for161

numerical convenience. Four parameters were estimated in the process: the162

basic reproduction number R0 (uniform prior within (1, 5)), initial num-163

ber of infectious people (uniform prior within (1, 400)), overdispersion of164

the (negative binomial) observation process (uniform prior within (0, 0.5))165

and volatility of the time-varying transmission rate (uniform prior within166

(0, 0.5)). We confirmed from the posterior distributions of the parameters167

that these priors did not set any problematic bounds. Samples of the pos-168

terior distribution of parameters and state trajectories were extracted using169

particle Markov chain Monte Carlo (Andrieu et al., 2010) as implemented170

in the ssm library (Dureau et al., 2013). For each forecast, 50,000 samples171

were extracted and thinned to 5000.172

Predictive model variants173

We used the samples of the posterior distribution generated using the Monte174

Carlo sampler to produce a range of predictive trajectories, using the final175

values of estimated state trajectories as initial values for the forecasts and176

simulating the model forward for up to 10 weeks. While all model fits were177

generated using the same model described above, we tested a range of dif-178

ferent predictive model variants to assess the quality of ensuing predictions.179

We tested variants where trajectories were stochastic (with demographic180

stochasticity and a noisy reporting process), as well as ones where these181

sources of noise were removed for predictions. We further tested predictive182

model variants where the transmission rate continued to follow a random183

walk (unbounded, on a log-scale), as well as ones where the transmission rate184

stayed fixed during the forecasting period. Where the transmission rate re-185

mained fixed for prediction, we tested variants where we used the final value186

of the transmission rate and ones where this value would be averaged over187
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a number of weeks leading up to the final fitted point, to reduce the poten-188

tial influence of the last time point, where the transmission rate may not189

have been well identified. We tested variants where the predictive trajectory190

would be based on the final values and start at the last time point, and ones191

where they would start at the penultimate time point, which could, again,192

be expected to be better informed by the data. For each model and forecast193

horizon, we generated point-wise medians and credible intervals from the194

sample trajectories.195

Null models196

To assess the performance of the semi-mechanistic transmission model we197

compared it to simpler null models: two representing the constituent parts198

of the semi-mechanistic model, and a non-mechanistic time series model.199

As first null model, we used a deterministic model that only contained the200

mechanistic core of the semi-mechanistic model with a fixed transmission201

rate. As second null model, we used an unfocused model where the num-202

ber of cases itself was modelled using a stochastic volatility model (without203

drift), that is a daily Gaussian random walk, and forecasts generated as-204

suming the weekly number of new cases was not going to change. Lastly, we205

used a null model based on a non-mechanistic Bayesian autoregressive linear206

model. The deterministic and models were implemented in libbi (Murray,207

2015) via the RBi (Jacob and Funk, 2017) and RBi.helpers (Funk, 2016) R208

packages (R Core Team, 2017). The autoregressive model was implemented209

using the bsts package (Scott, 2017).210

Metrics211

The paradigm for assessing probabilistic forecasts is that they should max-212

imise the sharpness of predictive distributions subject to calibration (Gneit-213

ing et al., 2007). We therefore first assessed whether models were calibrated214

at a given forecasting horizon, before assessing their sharpness and other215

properties.216

Calibration or reliability (Friederichs and Thorarinsdottir, 2012) of fore-217

casts is the ability of a model to correctly identify its own uncertainty in218

making predictions. In a perfectly calibrated model, the data at each time219

point look as if they came from the predictive probability distribution at220

that time. Equivalently, one can inspect the probability integral transform221

of the predictive distribution at time t (Dawid, 1984),222

ut = Ft(xt) (2)223
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where xt is the observed data point at time t ∈ t1, . . . , tn, n being the number224

of forecasts, and Ft is the (continuous) predictive cumulative probability225

distribution (CDF) at time t. If the true probability distribution of outcomes226

at time t is Gt then the forecasts Ft are said to be ideal if Ft = Gt at all227

times t. In that case, the probabilities ut are distributed uniformly.228

To assess calibration, we applied the Anderson-Darling test of unifor-229

mity to the probabilities ut. The resulting p-value was a reflection of how230

compatible the forecasts were with the null hypothesis of uniformity of the231

PIT, or of the data coming from the predictive probability distribution. We232

considered a model to be calibrated if the p-value found was greater than a233

threshold of p ≥ 0.1, possibly calibrated if 0.01 < p < 0.1, and uncalibrated234

if p ≤ 0.01.235

Sharpness is the ability of the model to generate predictions within a236

narrow range of possible outcomes. It is a data-independent measure, that237

is, it is purely a feature of the forecasts themselves. To evaluate sharpness at238

time t, we used the median absolute deviation about the median (MADM)239

of y240

St(Ft) = m (|y −m(y)|) (3)241

where y is a variable distributed according to Ft, and m(y) is the median242

of y. The sharpest model would focus all forecasts on one point and have243

S = 0, whereas a completely blurred forecast would have S → ∞. Again,244

we used Monte-Carlo samples X from Ft to estimate sharpness.245

We further assessed the bias of forecasts to assess whether a model sys-246

tematically over- or underpredicted. We defined bias at time t as247

Bt(Ft, xt) = 2

(∫ ∞
−∞

Ft(y)H(y − xt)dy − 0.5

)
(4)248

where H(x) is the Heaviside step function with the half-maximum conven-249

tion H(0) = 1/2. This metric is equivalent to250

Bt(Ft, xt) = 2 (EFt [H(X − xt)]− 0.5) (5)251

which can be estimated using a finite number of samples, such as the Monte-252

Carlo samples generated in our inference procedure. Here, xt are the ob-253

served data points, EFt is the expectation with respect to the predictive254

CDF Ft and X are independent realisations of a variable with distribution255

Ft. The most unbiased model would have exactly half of forecasts above or256

equal to the data at time t and Bt = 0, whereas a completely biased model257

would yield either all forecasts above (Bt = 1) or below (Bt = −1) the data.258

To get a single bias score U , we took the mean across forecast time259

B(Ft, xt) =
1

T

∑
t

Bt(Ft, xt), (6)260
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where T is the number of forecasting time points.261

Lastly, we evaluated forecasts using the Continuous Ranked Probability262

Score (CRPS, Hersbach, 2000). CRPS is a distance measure that measures263

forecasting performance at the scale of the predicted data, combining an264

assessment calibration and sharpness. It is a strictly proper forecasting score,265

that is one which is optimised if the predictive distribution is the same as266

the one generating the data, with 0 being the ideal score. CRPS reduces267

to the mean absolute error (MAE) if the forecast is deterministic and can268

therefore be seen as its probabilistic generalisation. It is defined as269

CRPS(Ft, xt) = −
∫ ∞
−∞

(Ft(y)−H(y − xt))2 dy, (7)270

A convenient equivalent formulation using independent samples from Ft271

was suggested by Gneiting et al. (2007) and is given by272

CRPS(Ft, xt) = EFt |X − xt| −
1

2
EFt

∣∣X −X ′∣∣ , (8)273

where X and X ′ are independent realisations of a random variable with274

CDF Ft.275

Results276

The semi-mechanistic model used to generate real-time forecasts during the277

epidemic was able to reproduce the trajectories up to the date of each fore-278

cast, following the data closely by means of the smoothly varying transmis-279

sion rate (Fig. 1). The overall behaviour of the reproduction number (ig-280

noring depletion of susceptibles which did not play a role at the population281

level given the relatively small proportion of the population infected) was282

one of a near-monotonic decline, from a median estimate of 2.9 (interquartile283

range (IQR) 2.2–3.8, 95% credible interval (CI) 1.1–7.8) in the first fitted284

week (beginning 10 August, 2014) to a median estimate of 1.3 (IQR 0.9–1.9,285

95% CI 0.3–3.9) in early October, 1.4 (IQR 1.0–2.0, 95% CI 0.4–4.6) in early286

November, 1IQR 0.7–1.4, 95% CI 0.2–3.0) in early December, 0.6 in early287

January (IQR 0.4–0.9, 95% CI 0.1–1.9) and 0.3 at the end of the epidemic288

in early Feburary (IQR 0.2–0.5, 95% CI 0.1–1.3).289

Forecasts from the semi-mechanistic model were calibrated for one or290

two weeks, but deteriorated rapidly at longer forecasting horizons (Table 1291

and Fig. 2). The two best calibrated models used deterministic forecasts292

starting at the last fitted data point. Of these two, forecasts that kept the293

transmission rate constant from the value at the last data point performed294
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Figure 1. Final fit of the semi-mechanistic model to the Ebola
outbreak in Western Area, Sierra Leone. (A) Final fit of the
reported weekly incidence (black line and grey shading) to the data (black
dots). (B) Corresponding dynamics of the reproduction number (ignoring
depletion of susceptibles). Point-wise median state estimates are indicated
by a solid line, interquartile ranges by dark shading, and 90% intervals by
light shading. The threshold reproduction number (R0 = 1), determining
whether case numbers are expected to increase or decrease, is indicated by
a dashed line.

slightly better than one that continued to change the transmission rate fol-295

lowing a random walk with volatility estimated from the time series. Both296

of the best calibrated models were calibrated for two-week ahead forecasts,297

and possibly calibrated for three weeks. All of the model variants were un-298

calibrated four weeks or more ahead, and none of the stochastic models was299

calibrated for any forecast horizon.300

The best-calibrated of our semi-mechanistic forecasts was better cali-301

brated than any of the null models (Fig. 3A) for up to three weeks. While302

the autoregressive null model was calibrated for 1-week-ahead forecasts, it303

was not calibrated for longer forecast horizons. The unfocused null model,304

which assumes that the same number of cases will be reported in the weeks305

following the week during which the forecast was made, was only possibly306

calibrated for 1-week ahead and uncalibrated beyond. The deterministic307

null model was uncalibrated for all forecast horizons.308

Our model as well as all null models except the unfocused model showed a309

tendency to overestimate the predicted number of cases (Fig. 3B). This bias310

increased with the forecast horizon. The best-calibrated semi-mechanistic311

model progressed from a 12% bias at 1 week ahead to 20% (2 weeks), 30% (3312

weeks), 40% (4 weeks) and 44% (5 weeks) overestimation. At the same313

time, this model showed rapidly decreasing sharpness as the forecast horizon314

increased (Fig. 3C). This is reflected in the mean CRPS values (Fig. 3D),315

which combine calibration and sharpness and reflect a probabilistic analogue316
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Model Forecast horizon (weeks)

stochasticity start averaged volatility 1 2 3 4

deterministic at last data point no yes 0.24 0.1 0.01 <0.01
deterministic at last data point no no 0.3 0.13 0.02 <0.01
deterministic at last data point 2 weeks no 0.26 0.03 <0.01 <0.01
deterministic at last data point 3 weeks no 0.24 <0.01 <0.01 <0.01
deterministic 1 week before no yes 0.05 0.01 <0.01 <0.01
deterministic 1 week before no no 0.07 0.02 <0.01 <0.01
deterministic 1 week before 2 weeks no 0.08 <0.01 <0.01 <0.01
deterministic 1 week before 3 weeks no 0.03 <0.01 <0.01 <0.01
stochastic at last data point no yes 0.02 0.02 <0.01 <0.01
stochastic at last data point no no 0.02 0.02 <0.01 <0.01
stochastic at last data point 2 weeks no 0.01 <0.01 <0.01 <0.01
stochastic at last data point 3 weeks no <0.01 <0.01 <0.01 <0.01
stochastic 1 week before no yes <0.01 <0.01 <0.01 <0.01
stochastic 1 week before no no <0.01 <0.01 <0.01 <0.01
stochastic 1 week before 2 weeks no <0.01 <0.01 <0.01 <0.01
stochastic 1 week before 3 weeks no <0.01 <0.01 <0.01 <0.01

Table 1. Calibration of forecast model variants of our
semi-mechanistic model. Shown is the calibration (p-value of the
Anderson-Darling test of uniformity) for deterministic and stochastic
forecasts starting either at the last data point or one week before, either
starting from the last value of the transmission rate or from an average
over the last 2 or 3 weeks, and including volatility (in a Gaussian random
walk) in the transmission rate or not, at different forecast horizons up to 4
weeks. The p-values highlighted in bold reflect predictive models we
consider likely to be calibrated.

to the MAE. At 1-week ahead, the mean CRPS values of the autoregressive,317

unfocused and best semi-mechanistic forecasting models were all around 30318

(i.e., on average the prediction was out by approximately 30 cases). At319

increasing forecasting horizon, the CRPS of the semi-mechanistic model320

grew faster than the CRPS of the autoregressive and unfocused null models,321

but since these were no longer calibrated at horizons loner than one week,322

the semi-mechanistic model would still be preferred for forecast horizons up323

to three weeks.324

We studied the calibration behaviour of the models over time, that is325

using the data and forecasts available up to different time points during the326

epidemic (Fig. 4). This shows that from very early on, not much changed327

in the ranking of the different semi-mechanistic model variants. Comparing328

the best semi-mechanistic forecasting model to the null models, again, for329

almost the whole duration of the epidemic the semi-mechanistic model would330
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Figure 2. Calibration of forecasts from the semi-mechanistic
model. (A) Calibration of model variants (p-value of Anderson-Darling
test) as a function of the forecast horizon. Shown in dark red is the best
calibrated forecasting model variant. Other model variants are shown in
light red. (B) Comparison of one-week forecasts of reported weekly
incidence generated using the best semi-mechanistic model variant to the
subsequently released data. The data are shown as a thick line, and
forecasts as dots connected by a thin line. Dark shades of grey indicate the
point-wise interquartile range, and lighter shades of grey the point-wise
90% credible interval.

have been determined to be the best calibrated for forecasts 1 or 2 weeks331

ahead.332

Discussion333

Outbreaks of emerging infectious diseases in resource-poor settings are often334

characterised by limited data and a need for short-term forecasts to inform335

bed demands and allocation of other human and financial resources. Several336

groups produced and published forecasts over the course of the Ebola epi-337

demic, and the alleged failure of some to predict the correct number of cases338

by several orders of magnitude generated some controversy around the use-339

fulness of mathematical models (Butler, 2014; Rivers et al., 2014). To our340

knowledge, we were the only research team making weekly forecasts avail-341

able in real time, distributing them to a wide range of international public342

health practitioners via a dedicated email list, as well as on a publicly ac-343

cessible web page. Because we did not have access to data that would have344

allowed us to assess the importance of different transmission routes (buri-345

als, hospitals and the community) we relied on a relatively simple, flexible346

model.347

Applying a suite of assessment methods to our forecasting model, we348

found that the used semi-mechanistic model variants were probabilistically349
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Figure 3. Forecasting metrics of the best semi-mechanistic model
variant compared to null models. Metrics shown are (A) calibration
(p-value of Anderson-Darling test, (B) bias, (C) sharpness (MADM) and
(D) CRPS, all as a function of the forecast horizon.

calibrated to varying degree with the best ones calibrated for up to 2-3350

weeks ahead, but performance deteriorated rapidly as the forecasting horizon351

increased. Since the model variants were similar enough to produce the same352

mean future trajectories, differences in calibration reflected differences in the353

quantification of uncertainty. The best performing forecasts were the once354

generated the least variance in the trajectories, indicating that, in general,355

our models overestimated the possible diversity in future trajectories. A356

possible future improvement could be to post-process predictions by tuning357

their variance to improve performance (Liu et al., 2015).358

The rapid deterioration of probabilistic calibration even of our best per-359

forming model variants reflects our lack of knowledge about the underlying360

processes shaping the epidemic at the time, from public health interventions361

by numerous national and international agencies to changes in individual and362

community behaviour. During the epidemic, we only published forecasts up363

to 3 weeks ahead, as longer forecasting horizons were not considered appro-364

priate.365
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Figure 4. Calibration over time. Shown are calibration scores of the
forecast up to the time point shown on the x-axis. (A) Semi-mechanistic
model variants, with the best model highlighted in dark red and other
model variants are shown in light red. (B) Best semi-mechanistic model
and null models. In both cases, 1-week (left) and 2-week (right) calibration
(p-value of Anderson-Darling test) are shown.

Our forecasts suffered from bias that worsened as the forecasting horizon366

expanded. Generally, the forecasts tended to overestimate the number of367

cases to be expected in the following weeks. Log-transforming the transmis-368

sion rate in order to ensure positivity skewed the underlying distribution and369

made very high values possible. Moreover, we did not model a trend in the370

transmission rate, whereas in reality transmission decreased over the course371

of the epidemic, probably due to a combination of factors ranging from bet-372

ter provision of isolation beds to increasing awareness of the outbreak and373

subsequent behavioural changes. While our model captured changes in the374

transmission rate in model fits, it did not forecast any trends such as a375

the observed decrease over time. Capturing such trends and modelling the376

underlying causes would be an important future improvement of real-time377

infectious disease models used for forecasting.378

There can be trade-offs between achieving good outcomes on the differ-379

ent forecast metrics we used, so that deciding whether the best forecast is380

the best calibrated, the sharpest or the least biased, or some compromise381

between the three, is not a straightforward task. Our assessment of fore-382

casts using separate metrics for probabilistic calibration, sharpness and bias383

highlights the underlying trade-offs. While the semi-mechanistic model we384
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used during the Ebola epidemic was better calibrated than the null mod-385

els, this came at the expense of a decrease in the sharpness of forecasts.386

Comparing the models using the CRPS alone, the best calibrated semi-387

mechanistic model would not necessarily have been chosen. Following the388

paradigm of maximising sharpness subject to calibration, we therefore rec-389

ommend to treat probabilistic calibration as a prerequisite to the use of390

forecasts, in line with what has recently been suggested for post-processing391

of ensemble forecasts (Wilks, 2018). Probabilistic calibration is essential for392

making meaningful probabilistic statements (such as the chances of seeing393

the number of cases exceed a set threshold in the upcoming weeks) that en-394

able realistic assessments of resource demand, the possible future course of395

the epidemic including worst-case scenarios, as well as the potential impact396

of public health measures.397

Other models may have performed better than the ones presented here.398

The deterministic SEIR model we used as a null model performed poorly on399

all forecasting scores, and failed to capture the downturn of the epidemic in400

Western Area. On the other hand, a well-calibrated mechanistic model that401

accounts for all relevant dynamic factors and external influences could, in402

principle, have been used to predict the behaviour of the epidemic reliably403

and precisely. Yet, lack of detailed data on transmission routes and risk404

factors precluded the parameterisation of such a model and are likely to do405

so again in future epidemics in resource-poor settings. Future work in this406

area will need to determine the main sources of forecasting error, whether407

structural, observational or parametric, as well as strategies to reduce such408

errors (Pei and Shaman, 2017).409

In practice, there might be considerations beyond performance when410

choosing a model for forecasting. Our model combined a mixture of a mech-411

anistic core (the SEIR model) with non-mechanistic variable elements. By412

using a flexible non-parametric form of the time-varying transmission rate,413

the model provided a good fit to the case series despite a high levels of uncer-414

tainty about the underlying process. At the same time, having a model with415

a mechanistic core came with the advantage of enabling the assessment of416

interventions just as with a traditional mechanistic model. For example, the417

impact of a vaccine could be modelled by moving individuals from the sus-418

ceptible into the recovered compartment (Camacho et al., 2015a; Camacho419

et al., 2017). At the same time, the model was flexible enough to visually420

fit a wide variety of time series, and this flexibility might mask underlying421

misspecifications. More generally, when choosing between forecast perfor-422

mance and the ability to explicitly account for the impact of interventions,423

a model that accounts for the latter might, in some cases, be preferable.424

Epidemic forecasts played an important and prominent role in the re-425

sponse to and public awareness of the Ebola epidemic (Frieden and Damon,426
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2015). Forecasts have been used for vaccine trial planning against Zika427

virus (World Health Organization, 2017) and will be called upon again to428

inform the response to the next emerging epidemic or pandemic threat.429

Recent advances in computational and statistical methods now make it pos-430

sible to fit models in near-real time, as demonstrated by our weekly fore-431

casts (Center for the Mathematical Modelling of Infectious Diseases, 2015).432

An agreement on standards of forecasting assessment is urgently needed in433

infectious disease epidemiology, and retrospective or even real-time assess-434

ment of forecasts should become standard for epidemic forecasts to prove435

accuracy and improve end-user trust. The metrics we have used here or436

variations thereof could become measures of forecasting performance that437

are routinely used to evaluate and improve forecasts during epidemics. To438

facilitate this, outbreak data must be made available openly and rapidly.439

Where available, combination of multiple sources, such as epidemiological440

and genetic data, could increase predictive power. It is only on the basis of441

systematic and careful assessment of forecast performance during and after442

the event that predictive ability of computational models can be improved443

and lessons be learned to maximise their utility in future epidemics.444
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