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Abstract  

The fraction of cases reported, known as ‘reporting’, is a key performance indicator in an 

outbreak response, and an essential factor to consider when modelling epidemics and 

assessing their impact on populations. Unfortunately, its estimation is inherently difficult, as it 

relates to the part of an epidemic which is, by definition, not observed. 

 

We introduce a simple statistical method for estimating reporting, initially developed for the 

response to Ebola in Eastern Democratic Republic of the Congo (DRC), 2018-2020. This 

approach uses transmission chain data typically gathered through case investigation and 

contact tracing, and uses the proportion of investigated cases with a known, reported infector as 

a proxy for reporting. Using simulated epidemics, we study how this method performs for 

different outbreak sizes and reporting levels. Results suggest that our method has low bias, 

reasonable precision, and despite sub-optimal coverage, usually provides estimates within close 

range (5-10%) of the true value. 

 

Being fast and simple, this method could be useful for estimating reporting in real-time in 

settings where person-to-person transmission is the main driver of the epidemic, and where 

case investigation is routinely performed as part of surveillance and contact tracing activities. 
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Author summary 

When responding to epidemics of infectious diseases, it is essential to estimate how many 

cases are not being reported. Unfortunately reporting, the proportion of cases actually observed, 

is difficult to estimate during an outbreak, as it typically requires large surveys to be conducted 

on the affected populations. Here, we introduce a method for estimating reporting from case 

investigation data, using the proportion of cases with a known, reported infector. We used 

simulations to test the performance of our approach by mimicking features of a recent Ebola 

epidemic in the Democratic Republic of the Congo. We found that despite some uncertainty in 

smaller outbreaks, our approach can be used to obtain informative ballpark estimates of 

reporting under most settings. This method is simple and computationally inexpensive, and can 

be used to inform the response to any epidemic in which transmission events can be uncovered 

by case investigation. 
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Introduction 

The response to infectious disease outbreaks increasingly relies on the analysis of various data 

sources to inform operation in real time [1,2]. Outbreak analytics can be used to characterise 

key factors driving epidemics, such as transmissibility, severity, or important delays like the 

incubation period or the serial interval [2]. Amongst these factors, the amount of infections 

remaining undetected in the affected populations is a crucial indicator for assessing the state of 

an epidemic, and yet this quantity is often hard to estimate in real time [3–6]. Indeed, estimation 

of the overall proportion of individuals infected (attack rates) typically requires time-consuming 

serological  surveys [7–9] which may not be achievable in resource-limited, large-scale 

emergencies such as the 2014-2016 Ebola virus disease (EVD) outbreak in West Africa [10], or 

the more recent EVD outbreak in Eastern provinces of the Democratic Republic of the Congo 

(DRC) [11,12].  

 

As an alternative, one may attempt to quantify reporting, i.e. the proportion of all infections 

which result in notified cases. Unfortunately, this quantity is also hard to estimate, and usually 

requires the analysis of epidemiological and genomic data through complex methods for 

reconstructing transmission trees [13–15] or transmission clusters [16]. Such requirements can 

mean that by the time estimates are available, decisions have already been made, or the 

outbreak situation has changed [17–19]. Therefore, approaches for timely estimation of 

reporting to help inform decision making during a response are required. 

 

Methods for estimating reporting in real time should ideally exploit data which is routinely 

collected as part of the outbreak response. In diseases where dynamics are mostly governed by 
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person-to-person transmission, case investigation and contact tracing can be powerful tools for 

understanding past transmission events as well as detecting new cases as early as possible 

[11,20–23]. For vaccine-preventable diseases, contact tracing can also be used for designing 

ring vaccination strategies, as seen in recent EVD outbreaks in the DRC [11,20]. These data 

also contain information about reporting. Intuitively, the frequency of cases whose infector is a 

known and reported case is indicative of the level of reporting: the more frequently case 

investigation identifies a known infector, the higher the corresponding case reporting should be. 

Conversely, cases with no known epidemiological link after investigation are indicative of 

unobserved infections, and therefore under-reporting. 

 

In this article, we introduce a method to estimate case reporting from contact tracing data. This 

approach, designed during the Ebola outbreak in Eastern DRC [11,12], was originally aimed at 

assessing case reporting in a context where insecurity made surveillance difficult, and 

under-reporting likely [12]. The approach utilized transmission chain data and calculated the 

proportion of cases with a known epidemiological link as a proxy for reporting. We provide a 

derivation of the estimator and explain the rationale of this approach and assess its 

performance using simulated outbreaks of different sizes with varying levels of reporting. Based 

on the simulation results, we make some suggestions regarding the use of this method to inform 

strategic decision making during an outbreak response.  
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Methods 

We present the analytical derivation of our method of estimating reporting, defined as the 

proportion of cases actually notified during an outbreak. We then describe the simulation study, 

using the ADEMP (Aim, Data generating mechanism, Estimand, Methods, Performance 

measures) framework as described by Morris et al 2019 [24,25], used to evaluate the 

performance of the methods under various conditions.  

 

Estimating reporting from epidemiological links 

Our method exploits transmission chains derived from case investigation and contact tracing 

data. The rationale for the approach is to consider the proportion of cases with a known infector 

as a proxy for the proportion of infections (including asymptomatic but infectious individuals) 

reported. The proportion of cases with a known infector is by definition the proportion of 

infectors who were reported (Figure 1), so that the reporting probability can be estimated asπ  

where is the number of secondary cases (infectees) with a known infector and  π︿ =  nk
n  + nk u

nk nu 

is the number of secondary cases without a known infector. 

Derivation of estimator for reporting 

We define  

- number of reported infectorsmr  

- number of unreported infectorsmu  

- number of secondary cases (infectees) with known infectornk  

- number of secondary cases without known infectornu  
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 - reproduction number, i.e. average number of secondary cases by caseR  

- reporting probability following some unspecified probability distribution with unknownπ  

probability parameter  such that where secondary cases are assumed to followE(π) =  mr
m  + mr u  

 

the same reporting distribution as primary infections. 

 

Let be the total number of secondary cases following an unspecified probabilitynu + nk  

distribution so that .RE(n ) (m )u + nk =  r + mu    

Then the expected number of reported infectees with a known infector is  

.RπE(n ) mk =  r   

Similarly, the expected number of reported infectees without a known infector is 

 RπE(n ) mu =  u    

From this we have that  

   m   and mr =  Rπ
E(n )k 

 u =  Rπ
E(n )u   

By definition 

 π =  mr
m +mr u

  

Therefore  

(π)  E =  Rπ
E(n )k 

 Rπ
E(n ) + E(n )k u =  E(n )k

E(n ) + E(n )k u
  

and replacing the expectations with their estimates from the data, we get the estimator 

. π︿ =  nk
n  + nk u

 

 

 

  

7 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.17.431606doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431606
http://creativecommons.org/licenses/by/4.0/


Uncertainty for reporting 

The uncertainty associated with this estimation can be estimated using various methods for 

computing confidence intervals of proportions. Using the standard approach for estimating 

standard errors for a proportion we have  

E  .S π =  n +n  k u

π×(1 −π)︿ ︿

 

Here, we used exact binomial confidence intervals which can be calculated: 

1 ) π (1  )( +  n − n +1k
n F [ ; 2n  ,2(n − n +1)]k 2

α
k k

−1
<  <  +  n − nk

n F [1 − ; 2(n +1), 2(n − n )]k 2
α

k k

−1
 

Where , total number of secondary cases. is the c quantile from an n nn =  k +  u (c; , )F d1 d2  

F-distribution with degrees of freedom and is the confidence level.,d1 d2 α1 −    

Simulation study 

Aim 

We aim to test the performance of the method for different outbreak sizes and actual reporting, 

in terms of bias, coverage, and precision (in an operational context) using simulated outbreaks.  

Data generating mechanism 

We considered twelve data-generating mechanisms (three reporting rates by four reported 

outbreaks sizes) and performed 4000 repetitions per mechanism. 

 

Each repetition corresponded to a hypothetical outbreak with a known transmission tree. To 

simulate the reporting process, cases were removed randomly from the transmission chains 
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using a Binomial process with a probability (1 - reporting).  We will thus distinguish the total 

outbreak size, which represents all cases in the outbreak, and the reported outbreak size, which 

represents the number of cases reported. For simplicity, we assumed that all cases reported 

were investigated, so that it is known if they had a documented epidemiological link, or not, 

amongst reported cases. 

 

For each outbreak (repetition) we removed observations so that reporting was 25%, 50%, or 

75%. Therefore a single simulated outbreak will give three different observed outbreaks. We 

categorised the simulations into reported outbreak sizes of 1-99, 1-499, 500-999, 1000+. 

 

Outbreak simulation 

We used the R package simulacr [26] to simulate outbreaks, the reporting process, and the 

subsequently observed transmission chains. simulacr implements and extends individual-based 

simulations of epidemics previously used to evaluate transmission tree reconstruction methods 

[13,14,27]. A Poisson branching process is used to generate new cases in time (with daily 

time-steps), drawing from a distribution for the reproduction number (R) and the infectious 

period to determine rates of infection. The infectiousness of a given individual i at time t  is, 

noted λi,t, is calculated as: 

λi,t  = R i w(t - s i)  

where Ri is the reproduction number for individual i, s i is their date of symptom onset, and w is 

the probability mass function of the duration of infectiousness (time interval between onset of 

symptom and new secondary infections). New cases generated at time t+1 are drawn from a 

Poisson distribution with a rate Λt summing the infectiousness of all cases: 

Λt = (n s / n ) ∑i λ i,t  
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where ns is the number of susceptible individuals and n the total population size, so that the 

branching process includes a density-dependence in which rates of infection decrease with the 

proportion of susceptibles.  

 

Transmission trees are built by assigning infectors to newly infected individuals according to a 

multinomial distribution in which potential infectors have a probability λi,t / ∑i λ i,t  of being drawn. 

The dates of symptom onset and case notification are generated for each new case using 

user-provided distributions for the incubation time and reporting delays. Simulations run until 

any of the set duration of the simulation is reached (here, 365 days).  

 

Here, we used parameters values and distributions in line with estimates from the Eastern DRC 

Ebola outbreak [12,28], the details of which are provided in Table 1. All code used for running 

these simulations is available from https://github.com/jarvisc1/2020-reporting . 

Estimand: Reporting  

We considered a single estimand the level of reporting.π  

Method 

For each repetition we calculated the proportion of the number of cases with a known infector 

over the total number of reported cases, that is the estimator We further calculated .π︿ =  nk
n  + nk u

 

the standard error and 95% exact binomial confidence intervals. 
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Performance measures 

The performance of the method was measured using bias, coverage, and precision. For bias 

and coverage, the Monte-Carlo standard errors were calculated to quantify uncertainty about 

the estimates of the performance [29]. The equations used are detailed in Table 2 and were 

taken from Morris et al [24]. In addition, results were classified according to different ranges of 

absolute error, for a more operational interpretation of the results. 

 

Bias is the difference between the expected value and the true value. It was measured by taking 

the difference between the average estimate of reporting versus the true reporting. 

Unbiasedness is a desirable statistical quality but a small amount of bias may be tolerated in 

exchange for other desirable qualities of an estimator. The estimates of reporting were 

presented visually by displaying the estimates of all 4000 simulations for each scenario. 

 

Coverage is the percentage of CIs containing the true value. In the case of a 95% CI this should 

contain the true value 95% of the time. We counted the number of repetitions where the true 

value was contained in the 95% CI and divided by the total number of repetitions. The coverage 

was visualised through the use of Zip plots. This new visualisation created by Morris et al [24], 

helps to assess the coverage of a method by viewing the CIs directly. Assessing an expected 

95% coverage with a Monte-Carlo standard error of 0.35 requires 3877 simulations [24] which is 

well within our 4000 simulations .  
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Precision represents how close the estimates are to each other. The model based and empirical 

standard error were also calculated to provide an indication of precision. The model based 

standard error is mean of the square of the bias, and the empirical standard error represents the 

spread of the estimates. This gives an indication of how much the point estimates vary across 

simulations based on the level of reporting and sample size. Although the method may give 

unbiased estimates with good coverage under repeated sampling, an imprecise method could 

lead to large differences from the true value when applied to a single dataset (that is, confidence 

intervals may cover the true value honestly but are wide). 

 

We further explored the impact of bias and precision of the estimator by considering the 

deviations of the estimates from the true value termed absolute error. The absolute error is 

defined as the absolute difference between the estimated reporting and its true value, 

expressed as percentages. For instance, estimates of 43% and 62% for a true reporting of 50% 

would correspond to absolute errors of 7% and 12%, respectively. During a disease outbreak, 

decisions are frequently made in the face of large uncertainties, and small absolute differences 

in the estimated level of reporting are unlikely to result in strategic changes. Therefore, as a 

perhaps more operationally relevant metric, we categorised results according to how far from 

the true value estimates were, using an arbitrary scale: very close (≤5% absolute error), close 

(≤10%), approximate (≤15%) or inaccurate (≤20%). 
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Results 

Bias 

There was very little bias across all the simulated scenarios (Table 3 and Figure 2). For 

outbreaks with over 100 cases all estimates of bias were 0 with decreasing Monte Carlo error 

from 0.04 to 0.01 as the size of the reported outbreak increased. For outbreaks reported as less 

than 100 cases the bias was -0.1 for reporting of 0.50 and 0.75 and 0 for 0.25 with Monte Carlo 

error of 0.07. Table 3 presents the bias for each scenario and it can be seen that all of these 

estimates were within one standard error from zero, suggesting reasonable confidence that this 

is an overall unbiased estimator. 

Coverage 

The coverage varied across the simulated scenarios with all but reported outbreak size 10-99 

with reporting at 0.25 displaying under-coverage (Figure 3). The coverage was poor with all 

coverage estimates more than one standard error away from 95%, and most several standard 

errors away (Table 3). There was some suggestion of the counterintuitive pattern that coverage 

decreased as the reporting increased and that coverage decreased as the outbreak size 

increased.  
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Precision 

The model based standard error was below 0.07 for all estimates and below 0.04 for reported 

outbreaks of over 100 cases. Similar patterns are seen for the empirical standard error. 

Imprecise estimates were most marked when reported outbreaks were less than 100 cases and 

had 0.75 reporting. The precision increased (model based and empirical standard error 

decreased) as the reported outbreak size increased (Figure2, Table 3). Overall the precision 

appears reasonable when outbreaks are larger than 100. 

Absolute error 

Results showed that the estimates were rarely more than 15% away from the true reporting 

value in all simulation settings (Figure 4, Table 4). The absolute error was negligible in all larger 

reported outbreaks (500 cases and above), with the nearly all estimates very close (within 5%) 

to the true reporting value. Performance decreased in smaller outbreaks, but most estimates 

remained close (within 10%) to the true value. Results were worse in smaller outbreaks (10-99 

reported cases), but even there about half of the estimates were very close (within 5%) to the 

true value, and more than 80% of estimates were within 10% of the target.  
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Discussion  

We have presented a new estimator for the levels of reporting in an outbreak based on the 

proportion of cases with known infectors, which can be derived from case investigation data. 

Using simulated outbreaks to assess the performance of the method, we found that this 

approach generally had little bias, reasonable precision, but poor coverage. Across all 

simulations, estimated reporting was most often within 10% of the true value, suggesting the 

method will retain operational relevance under different settings. 

 

Simulation results indicate a first limitation of the method lies in the analysis of smaller 

outbreaks. Overall, the approach performed better in larger outbreaks, with all metrics pointing 

to improved results in outbreaks of more than 100 reported cases. Our approach also assumes 

a uniform sampling of the transmission tree over the time period on which the analysis is 

carried. It would in theory be prone to under-estimating reporting when entire branches of the 

transmission tree remain unobserved. For instance, if an epidemic is spreading in a location 

where surveillance is totally absent, a substantial number of cases may remain unnoticed, and 

such under-reporting would not be accounted for in our estimates. As a consequence, our 

method is best applied to geographic areas over which surveillance and case investigation 

efforts do not vary drastically. 

 

We also assumed that the reproduction number (R) was independent from the reporting 

process, so that reported source cases cause the same average number of secondary cases as 

non-reported ones. This condition may not always be met, for instance if unreported individuals 
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tend to cause more super-spreading events. In the context of Ebola, this may occur through 

community deaths, in which funeral exposure of a large number of relatives may give rise to a 

new cluster of cases from a single, unreported source case. Under such circumstances, we 

would expect our method to under-estimate reporting, although this should be further quantified 

by dedicated simulation studies. 

 

Another limitation of our method relates to data availability and quality. Our approach relies on 

case investigation data, a time-consuming process usually requiring interviews of patients 

and/or their close relatives. There are several possible outcomes from such investigation: i) a 

single infector can be identified amongst reported cases ii) a single infector can be identified, 

but is not amongst reported cases iii) there are several likely infectors, possibly mixing reported 

and unreported cases iv) likely infector(s) could not be identified. Our approach requires case 

investigations to fall within the first two categories. In our simulations, we assumed for simplicity 

that all reported cases were successfully investigated, so that the reported outbreak size 

effectively corresponds to the number of data points available for the estimation. In practice, the 

actual sample size will be the number of case investigations which led to identifying a single 

source case (reported, or not). As our method performs better in larger datasets (e.g. more than 

100 cases successfully investigated), the data requirement for estimating reporting from 

transmission chains will involve substantial field work.  

 

Unfortunately, alternative approaches for estimating under-reporting are very demanding in 

terms of data, typically needing to combine information on dates of onset, location of the cases, 

full genome sequences of the pathogen for nearly all cases, good prior knowledge on key 

delays (e.g. incubation period, serial interval) [13,16], and ideally contact tracing data [14]. 
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These methodologies are also much more complex and computer-intensive, as they either 

involve the reconstruction of transmission trees [13,14] or of outbreak clusters [16]. In contrast, 

the approach introduced here is fast and simple, and can be used in real time to estimate 

reporting based on data routinely collected as part of contact tracing activities and surveillance. 

 

We evaluated the performance of the method using simulated EVD outbreaks in line with 

estimates of transmissibility and epidemiological delays of the Eastern DRC Ebola epidemic 

[12,28], as this was the original context in which the method was developed. Further work 

should be devoted to investigating the method’s performance for other diseases and different 

epidemic contexts. In particular, it would be interesting to study the potential impact of 

correlations between transmissibility and under-reporting, i.e. situations in which non-reported 

cases may exhibit increased infectiousness and cause super-spreading events. 

 

Conclusion 

In this paper, we provided a derivation of a straightforward and pragmatic estimator to real-time 

estimation of case reporting in outbreak settings, and tested this approach under a range of 

simulated conditions. The method exhibited little bias, reasonable precision, and while coverage 

was suboptimal under some settings (in large outbreaks with higher reporting), most estimates 

were within reasonable range (10-15%) of the true value. This suggests the method will be 

useful for informing the response to outbreaks in which person-to-person transmission is the 

main driver of transmission, and where enough (ideally > 100) chains of transmissions can be 

retraced through epidemiological investigation. 
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Figures 

Figure 1: rationale of the method for estimating reporting. This diagram illustrates 

transmission events inferred by case investigation of reported secondary cases, with arrows 

pointing from infectors to infectees. Darker shades are used to indicate documented 

transmission events, while lighter shades show unknown infectors. Numbers of secondary 

cases with (blue) or without (orange) known infectors are used to estimate the reporting 

probability. This example uses an approximate reporting of 50%.  
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Figure 2: comparison of estimated versus actual reporting. This graph shows the results of 

reporting estimated by the method for 4000 simulated outbreaks, broken down by outbreak size 

category (y-axis). Each dot corresponds to an independent simulation. The vertical red bars 

indicate the average within each category. True reporting used in the simulations is indicated by 

colors. 
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Figure 3: Zip plot of showing coverage results. This graph shows the 95% confidence 

intervals estimated by the method, broken down by reported outbreak size category and true 

reporting value.  The vertical axis represent the fractional centile of where  and Z | |  Z =  SEi

(π −π)i π  

is reporting. The confidence intervals are ranked by their level of coverage and thus the vertical 

axis can be used to determine the proportion of confidence intervals that contain the true value 

where 0.95 would represent a coverage of 95%.  
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Figure 4: Absolute error in reporting estimation. This graph shows, for different simulation 

settings, the proportion of results within a given margin of absolute error, expressed as the 

absolute difference between the true and the estimated reporting (in %). Rows correspond to 

different outbreak size categories (outbreak size as reported). True reporting is indicated in 

color. 
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Tables 

Table 1: Parameters used for simulating outbreaks. This table details input parameters used 

for simulating outbreaks using the R package simulacr. Fixed values were used for all 

simulations, and reflect the natural history of the 2018-2020 Eastern DRC Ebola outbreak. 

Variable values changed across simulations. 

*Population size is controlled in each simulation, the outbreak sizes are determined after the 

outbreaks have been simulated and the proportion of cases not reported have been removed.  
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Fixed values  

Maximum duration of the outbreak 365 days 

Incubation time distribution 
  

Discretised gamma distribution 
mean of 9.7 days, sd = 5.5 days.  

Infectious period distribution 
 

Discretised gamma distribution 
mean = 5 days, sd = 4.7 days. 

Reproduction number distribution Gamma distribution:  
rate of 1.2 shape of 2.  

  

Variable values  

Population size* 
 

200, 500, 1000, 2000, 5000, 7500, 10000, 15000, 20000 

Outbreak size* 10-99, 100-499, 500-999, 1000+ 

Proportion of cases not reported 0.25, 0.50, 0.75 
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Table 2: Metrics used to measure performance in the simulation study.  
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Performance measure Definition 
Bias where is the true value and  is the estimate of value E[θ] θδ =  

︿

−  θ θ
︿

 

Coverage If we define a confidence interval  as theθ , θ )(
︿

low  
︿

upp  

 where then a 95% CI is when(θ  θ θ ) ψP
︿

low ≤  ≤  
︿

upp =  0, 1] ψ ∈ [   

It follows that coverage is the(θ  θ θ ) 0.95.P
︿

low ≤  ≤  
︿

upp =   

.(θ  θ θ )P
︿

low ≤  ≤  
︿

upp  

Precision 
  Model based  
  standard error 

 √V ar(θ)  

  Empirical based 
sstandard error  

E[(θ θ) ] 
︿

−  2  

Absolute error ||θi ˆ − θ  
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Table 3: Performance measures from 4000 simulation by reported outbreak size and true 

reporting level. Estimate (Monte-carlo standard error) 
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    Reported outbreak size 

Performance measures (MCSE) Proportion reported 10-99 100-499 500-999 1000 or more 

Bias 
0.25 0 (0.07) 0 (0.03) 0 (0.02) 0 (0.01) 

0.5 -0.01 (0.07) 0 (0.04) 0 (0.02) 0 (0.01) 

0.75 -0.01 (0.07) 0 (0.04) 0 (0.02) 0 (0.01) 

Coverage 
0.25 95.7% (0.3) 94.1% (0.4) 94.4% (0.4) 93% (0.4) 

0.5 92.6% (0.4) 92.4% (0.4) 91.3% (0.4) 91.2% (0.4) 

0.75 92.3% (0.4) 91.5% (0.4) 89.2% (0.5) 88.6% (0.5) 

Model standard error 
0.25 0.065 (0) 0.024 (0) 0.015 (0) 0.01 (0) 

0.5 0.061 (0) 0.038 (0) 0.019 (0) 0.011 (0) 

0.75 0.059 (0.001) 0.036 (0) 0.014 (0) 0.011 (0) 

Empirical standard error 
0.25 0.071 (0.001) 0.025 (0) 0.016 (0) 0.01 (0) 

0.5 0.07 (0.001) 0.044 (0) 0.022 (0) 0.012 (0) 

0.75 0.068 (0.001) 0.043 (0) 0.017 (0) 0.013 (0) 
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Table 4: Comparison of absolute error from 4000 simulations between true reporting 

levels and estimate of reporting  by reported outbreak size and true reporting level 
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    Absolute error from true value 

Proportion reported Reported outbreak size  ≤ 5%  ≤ 10%  ≤ 15%  ≤ 20% 

0.25 10-99 2213 (55.3%) 3376 (84.4%) 3849 (96.2%) 3973 (99.3%) 

 100-499 3817 (95.4%) 4000 4000 4000 

 500-999 3995 (99.9%) 4000 4000 4000 

 1000+ 3999 (100%) 4000 4000 4000 

0.5 10-99 2110 (52.8%) 3430 (85.8%) 3860 (96.5%) 3978 (99.4%) 

 100-499 2981 (74.5%) 3899 (97.5%) 3998 (100%) 4000 

 500-999 3905 (97.6%) 4000 4000 4000 

 1000+ 4000 4000 4000 4000 

0.75 10-99 2400 (60%) 3575 (89.4%) 3835 (95.9%) 3942 (98.6%) 

 100-499 3067 (76.7%) 3890 (97.2%) 3991 (99.8%) 4000 

 500-999 3988 (99.7%) 4000 4000 4000 

 1000+ 3992 (99.8%) 4000 4000 4000 
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