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viral load and HIV transmission in Southern Africa:
a mathematical modelling analysis
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Objectives: In low-income settings, treatment failure is often identified using CD4 cell
count monitoring. Consequently, patients remain on a failing regimen, resulting in a
higher risk of transmission. We investigated the benefit of routine viral load monitoring
for reducing HIV transmission.

Design: Mathematical model.

Methods: We developed a stochastic mathematical model representing the course of
individual viral load, immunological response and survival in a cohort of 1000 HIV-
infected patients receiving antiretroviral therapy (ART) in southern Africa. We calcu-
lated cohort viral load (CVL; sum of individual viral loads) and used a mathematical
relationship between individual viral load values and transmission probability to
estimate the number of new HIV infections. Our model was parameterized with data
from the International epidemiologic Databases to Evaluate AIDS Southern African
collaboration. Sensitivity analyses were performed to assess the validity of the results in
a universal ‘test and treat’ scenario, wherein patients start ART earlier after HIV
infection.

Results: If CD4 cell count alone was regularly monitored, the CVL was
2.6 x 10° copies/ml and the treated patients transmitted on average 6.3 infections each
year. With routine viral load monitoring, both CVL and transmissions were reduced by
31% to 1.7 x 10° copies/ml| and 4.3 transmissions, respectively. The relative reduction
of 31% between monitoring strategies remained similar for different scenarios.

Conclusion: Although routine viral load monitoring enhances the preventive effect of
ART, the provision of ART to everyone in need should remain the highest priority.
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Introduction

In the year 2010, 2.7 million people were newly infected
with HIV [1]. The majority of infections occur in sub-
Saharan Africa, where resources for patient management
remain limited. There is a strong association between
plasma HIV viral load and the risk of HIV transmission
[2]; meta-analyses of studies of serodiscordant couples
showed that patients who were treated with antiretroviral
therapy (ART) and had undetectable viral load did not
transmit HIV [3,4]. A more recent randomized controlled
trial showed that early initiation of ART reduced
transmission of HIV [5]. “Test and treat’, which involves
large-scale testing for HIV infection and immediate ART,
is a subject of debate [6—8]. The acceptability and
feasibility of universal testing and treatment is unclear, and
modelling studies have yielded conflicting results [6,9,10].
In particular, it may be difficult to achieve the necessary
high levels of adherence to therapy and high-risk sexual
behaviours might increase.

Relatively little attention has been paid to the fact that
with a ‘test and treat’ approach, not only the number of
people on ART, but the number of individuals failing
ART will increase. In high-income settings, viral load is
measured regularly to detect treatment failure and counsel
patients on adherence [11]. In sub-Saharan Africa and
other low-income settings, viral load monitoring is not
generally available and ART programmes, therefore, rely
on immunological and clinical criteria to identify
treatment failure [11]. The WHO CD4 cell count
criteria are, however, inaccurate predictors of virological
failure [12,13]. In Malawi and Zambia, where monitoring
is based on CD4 cell counts, a study showed that few
patients switched to second-line ART and many more
remained on a failing first-line regimen compared to
ART programmes monitoring viral load in South Africa
[14]. Routine viral load monitoring may, thus, help to
prevent new HIV infections by reducing the number of
patients on failing first-line regimens.

We developed an individual-based mathematical model
to study the importance of routine viral load monitoring
versus CD4 cell monitoring on cohort viral load (CVL)
and HIV transmission in Southern Africa. We analyzed
data from two sites participating in a collaboration of HIV
treatment programmes in Southern Africa to parameter-
ize the model and the results of these analyses are also
presented.

Methods

Data sources, eligibility and definitions

The International epidemiologic Databases to Evaluate
AIDS in Southern Africa (IeDEA-SA) is a collaboration
of ART programmes in six countries in Southern Africa

[15]. Data are collected at ART initiation (baseline) and
each follow-up visit using standardized instruments. All
sites have ethical approval to collect data and participate in
[eDEA-SA.

We restricted our analyses to the Gugulethu and
Khayelitsha ART programmes in Cape Town, South
Africa, where viral load and CD4 cell counts are
measured regularly. All treatment-naive patients aged at
least 16 years, who had started ART with at least two
nucleoside reverse transcriptase inhibitors (NRTTs) and
one non-nucleoside reverse transcriptase inhibitor
(NNRTT) were included. Second-line ART was defined
as a switch from an NNRTI-based regimen to a protease
inhibitor-based regimen, with at least one NRTI
changed.

We conducted statistical analyses on the cohort data and
did literature searches to estimate parameters. We used
parametric and semiparametric models to estimate time
to virological failure (viral load over 1000 copies/ml),
immunological failure (according to WHO criteria [16]),
death or loss to follow-up. Observed mortality, loss to
follow-up and non-HIV background mortality according
to the ASSA2008 model for Africans in Western Cape in
2007 [17] were used to calculate the corrected estimate
for HIV-related mortality. Details on the statistical and
mathematical methods are given in the web appendix
(1.1-1.2, http://links.Iww.com/QAD/A213).

Mathematical model

We adapted a published model that simulated disease
progression in a hypothetical cohort of 1000 HIV-
infected patients prior to starting ART [18]. In our
model, individuals were simulated independently of each
other and the properties of the individual and the timing
of events were calculated probabilistically based on a series
of rules and parametric distributions. The model included
a description of the time period before start of ART
and a detailed description of the time from ART start to
either death or a fixed maximum follow-up time. In the
following paragraph we give a brief explanation of the
structure of the model; more details are found in the web

appendix (3.1-3.2 http://links.lww.com/QAD/A213).

Modelling of treatment response and mortality

Each patient was assigned a baseline age and sex and,
based on these, an HIV-free life expectancy was
determined. Times of virological and immunological
failure were defined by simulating from distributions
parameterized by the data. Depending on the chosen
monitoring strategy either viral load or CD4 cell count is
measured every 6 months. Failures are observed at the
next visit after the true unobserved failure, and confirmed
in a second measurement 3 months later. Once failure is
observed, the patient switches to second-line ART.
Second-line failures are defined in the same way as first-
line failures using parameters from data, but their
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Fig. 1. Flow chart showing possible transitions between risk stages after start of antiretroviral therapy. In each stage, the patient
is exposed to specific risk of death. Transitions between stages are assigned randomly according to the failure and switching rates
observed in the Gugulethu and Khayelitsha antiretroviral therapy (ART) programmes in Cape Town, South Africa. The flow chart is
simplified; the nature of immunological failure (with or without preceding virological failure) will influence outcome of second-
line ART. As treatment failures are rare, most patients stay on successful first-line ART during the entire follow-up period.

probability additionally depends on the time spent on a
virologically failing first-line therapy and the first-line
immunological response.

Failure and switching events split the patient’s follow-up
time into different portions, as illustrated in Fig. 1. Each
patient spends the first 3 months in the initial stage, after
which she either enters a phase of successful treatment or
she experiences immunological or virological failure.
After virological failure, the hazard of death is assumed to
increase over time [19]. Similarly, immunological failure

increases the risk of death. After starting second-line
therapy, the patient enters a 3-month period during
which the hazard of HIV-related death returns to the level
before failure, unless second-line failure occurs. The
timing of failures and switching define the mortality
hazard, which again determines the time of HIV-related
death. To evaluate the level of viral load at the difterent
stages of ART, we analyzed data from the two cohorts.
The methods and results of these analyses are described
in the web appendix (1.4, http://links.lww.com/QAD/
A213).
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Cohort viral load and number of new infections

We calculated two measures for potential transmission.
We defined the CVL in a manner similar to the
community viral load by Das et al. [20]. An explicit
number of expected HIV transmissions were calculated
according to a relationship between individual viral load
values and infectiousness [2,21]. Both methods are
presented in more detail in the web appendix (2.1-2.3,
http://links.Iww.com/QAD/A213).

Main analysis

We ran 1000 simulations for both monitoring strategies
(CD4 monitoring and routine viral load monitoring) and
used the point estimates of the statistical analyses as
parameters. In both strategies, patients had measurements
every 6 months. If failure was observed, another
taken 3 months afterwards. We
calculated annual CVL and transmission, from the last
year before ART until the 5th year on ART. Mean values
were calculated over the 5 years on ART, which were
used to estimate the relative reduction in CVL and
transmission for routine viral load monitoring compared
to CD4 cell monitoring. The results were presented as
mean values over the 1000 simulations with 95%
confidence intervals.

measurement was

Sensitivity and uncertainty analyses

We conducted a range of sensitivity analyses to explore
the impact of our assumptions on the results (Table 1)
[22]. In the first three analyses we varied the assumptions

Table 1. Key assumptions of main and sensitivity analyses.

about the course of the individual viral load values over
time. In two additional analyses we explored the
consequences of earlier ART initiation, that is, we
assumed lower early mortality rates and lower failure rates.
In two final sensitivity analyses we assumed that the time
spent on a failing first-line regimen would not aftect the
risk of second-line failure and we changed our
assumptions about the effect of virological failure on
mortality. To assess the impact of the variability of key
parameter estimates on the results, we performed an
uncertainty analysis, wherein we sampled key parameter
values before each simulation using Latin Hypercube
Sampling. Details of this analysis are presented in web
appendix (4.2, http://links lww.com/QAD/A213).

Results

We describe the outcomes of the mathematical model
including all sensitivity analyses, wherein hypothetical
cohorts of 1000 patients were simulated with either
routine viral load or CD4 monitoring to compare
transmission. The baseline characteristics of the data
are shown in the web appendix (1.3; Table S1,
http://links.lww.com/QAD/A213). The results of the
statistical analyses and parameters for the distributions of
time to virological and immunological failure, time to
switching to second-line ART, and time to death are
shown in Table 2 [17,19,23]. The hazard ratios for

Main scenario

Sensitivity analysis

1) Level of undetectable viral load
2) Level of viral load after failure

3) Time from undetectable viral load
until reaching failure threshold

4) Mortality (HIV related)

Undetectable viral load is 10 copies/ml

The median viral load after failure is
10000 copies/ml

Viral load starts to increase 3 months
before reaching failure threshold of
1000 copies/ml

Time to HIV related death is estimated
from the cohorts; a double Weibull
distribution (weighted sum of two
Weibull distributions: one with decreasing,
one with constant or increasing hazard)
is used to reflect the high mortality
early after ART start

Undetectable viral load is 100 copies/ml

The median viral load after failure is either
1000 or 100000 copies/ml

Viral load starts to increase 1 month before
reaching failure threshold 1000 copies/ml

Time to HIV related death is estimated from
the cohorts, but the first component of the
double Weibull distribution, which
represents the high risk of death in the
first months after ART initiation, is omitted

5) Virological failure

is used

Time to virological failure is estimated
from the cohorts; a Weibull distribution

Time to virological failure is estimated from the
cohorts, but the scale parameter of the Weibull
distribution is increased to correspond to a 50%
lower hazard than in the main analysis. This is in
accordance with studies showing a lower risk of
virologic failure in people starting ART earlier with
higher CD4 cell counts [22]

S1) Resistance penalty for risk of
second-line failure

The time from switching to second-line
failure depends on the amount of time
spent on a failing first-line ART regimen

No resistance penalty is included (i.e. risk of
2nd-line failure after switching is the same
as the risk of 1st-line failure after ART start)

(i.e. assuming a resistance penalty)
Hazard ratio of HIV-related mortality
(virologically failing compared to

successful ART) increases over time

S2) Effect of virological failure
on mortality

Hazard ratio of HIV-related mortality
(virologically failing compared to successful
ART) is constant over time

For results of analyses ST and S2, see web appendix (4.1, http:/links.lww.com/QAD/A213). The parameter values of the main analyses are shown in
Table 2.
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Fig. 2. Number of patients in different viral load categories (a), cohort viral load (b) and expected number of new infections (c).
The same individuals were followed up through the entire 5 years, and because of mortality the total number of patients decreases
over time. ART, antiretroviral therapy; CVL, cohort viral load.

mortality associated with virological and immunological
failure are also shown.

Cohort viral load and number of transmissions

The results during the first 5 years on ART are shown in
Fig. 2. We assumed six-monthly CD4 monitoring alone
(left panels) or routine viral load monitoring (right
panels). The top panel (a) shows the number of patients
alive at the beginning of each year in three viral load
categories, panel (b) shows CVL, and panel (c) shows the
expected number of new infections. In the last year before
starting ART, CVL was 4.0 x 10® copies/ml, with most
patients  (99%) having viral load wvalues above
10000 copies/ml (results not shown). During the first
year on ART, CVL was similar with both monitoring
strategies (7.6 X 10° copies/ml). During subsequent
years, CVL ranged between 1.0x10° and
1.5 x 10° copies/ml with CD4 monitoring and between
2.3 x 10° and 2.9 x 10° copies/ml with routine viral load
monitoring. The annual number of transmissions
dropped from over 110 during the pre-ART period to
approximately nine during the first year of ART. After
this, the number of annual new infections ranged

between three and four with routine wviral load
monitoring and five and six with CD4 monitoring.
Routine viral load monitoring, therefore, reduced the
number of new infections by about 30% (Table 3).

Sensitivity and uncertainty analyses

Of the various sensitivity analyses (Table 3), the assumed
level of the viral load value after failure (analysis 2) had the
largest impact on the benefit of viral load monitoring
relative to CD4 monitoring. Assuming 1000 copies/ml
after failure resulted in a 5% reduction in CVL and a 16%
reduction in number of new infections, relative to CD4
monitoring. If the viral load at failure was assumed to be
similar to that at ART start, the corresponding reductions
were 65 and 45%. Increasing the level of undetectable
viral load to 100 copies/ml (analysis 1) led to an increase
in CVL and the number of new infections. The benefit of
routine viral load monitoring decreased; instead of 31
only 18% of infections were prevented, whereas the CVL
decreased only slightly from 31 to 29%. The time that
viral load started to increase before reaching the failure
threshold value did not affect CVL or number of
transmissions (analysis 3).
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Lower mortality, which would be more realistic in a
universal ‘test and treat’ strategy, did not affect CVL or
number of transmissions (analysis 4). If failure rates were
lower, both CVL and transmissions were reduced (analysis
5). If failure rates were assumed to be equally low in CD4
and viral load sites, 21% of transmissions were prevented
and the reduction in CVL dropped to 22%. Assuming a
lower failure rate in sites with routine viral load
monitoring only, would prevent 37% of infections and
lead to a 40% reduction in CVL.

The results of the two remaining sensitivity analyses
(analyses S1 and S2) and the uncertainty analysis are
shown in the web appendix (4.1—4.2, http://links.Iww.
com/QAD/A213).

Discussion

There is an ongoing debate on the benefit of routine viral
load monitoring. Regular viral load measurements help
to detect treatment failure earlier and may, therefore,
reduce mortality and HIV transmission. Our model
shows that routine viral load monitoring reduces CVL
substantially as compared to CD4 monitoring (currently
the standard of care in many low-income countries
[24,25]). Compared to CD4 monitoring, viral load
measurements reduced the average CVL by more than
30% over 5 years, and the reduction in transmissions
was similar.

At the end of 2009, ART coverage was below 40% in sub-
Saharan Africa [26]. The time from HIV infection to
ART eligibility is typically several years [27]; most people
are tested too late for HIV [28] and the majority of the
HIV-infected population remains untreated. The pro-
portion of new infections from treated individuals is,
therefore, small, and even large reductions in transmission
from treated individuals would hardly reduce the viral
load at the population level. However, there is a trend
toward earlier ART initiation; recently, WHO increased
the CD4 threshold for ART eligibility from 200 to
350 cells/pl [16], and there is evidence of clinical benefits
for starting ARTwith CD4 values above 350 [29-31]. An
even more fundamental change to the treatment policy
would be the implementation of the ‘test and treat’
strategy [6—8].

Our results should also be valid in a ‘test and treat’
situation. Although they are based on patients starting
ART with low CD4 values, the sensitivity analyses
showed that similar benefits can be achieved when
patients start ART earlier. Lower mortality did not have
an impact on the benefit of routine viral load monitoring.
Decreasing the rate of virological failure reduced the
benefit of viral load monitoring, but this was offset by
better adherence with viral load monitoring. Due to the

current WHO guidelines, to our knowledge no data on
mortality and virological failure rates have been published
for people starting ART shortly after diagnosis of HIV.
The available data do, however, suggest that the reduction
in mortality due to higher CD4 cell count becomes
minimal above 350 cells/pl [32], and several studies have
found no association between baseline CD4 cell counts
and risk of virological failure [33,34].

We investigated two different ways of estimating HIV
transmission and both have advantages and disadvantages.
Correlation between community viral load and HIV
incidence has been described by Das et al. [20] in San
Francisco. However, it is not clear if community viral load
is a good proxy for HIV incidence in low-income
settings, especially when assuming that most patients
would be treated. The main advantages of CVL are that it
is easy to calculate and it is independent of risk behaviour.
One of the main limitations is that CVL does not take into
account the number of individuals; 100 000 patients with
undetectable viral load of 10 copies/ml, 1000 patients
with a detectable viral load of 1000 copies/ml and one
patient with a very high viral load of 1000 000 copies/ml
will all contribute the same amount to CVL, but the
transmission potential will probably differ. The actual
numbers of transmissions may, therefore, vary substan-
tially between cohorts with similar CVL but different
viral load distributions.

The other method we used to calculate transmissions
assumes a linear relationship between logl10 viral load
values and HIV transmission. The resulting number of
new infections is more intuitive than CVL. It can, for
example, be directly transformed into costs, or other
measures including the number needed to treat or the cost
of preventing one HIV infection. However, calculating
the absolute number of prevented transmissions 1is
challenging, as it is highly sensitive to behavioural factors,
which often are difficult to estimate.

Furthermore, the approximate reduction of 30% in
transmissions should be applicable for different risk
behaviour scenarios. In our calculations we assumed
relatively high-risk behaviour. Individuals with fewer
sexual acts and higher rate of condom use would transmit
less, but the relative reduction would remain the same.
The rate of partner change is also not a key factor, as the
per-act transmission probabilities are low (see web
appendix, 2.3 for more details, http://links.lww.com/
QAD/A213).

Our model focused on a group of treated patients without
considering the entire population, and this approach
limited us in several ways. Because the main focus was on
comparing monitoring strategies on ART, we did not
model the pre-ART period in detail. Therefore, our results
remain dependent on local characteristics, including HIV
prevalence, ART coverage and ART eligibility criteria.
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Transmission during the acute stage of infection has
recently been estimated to contribute to about 38% of
new infections [35] but various other estimates exist [36]
and the acute phase may remain an important source of
transmission in a ‘test and treat’ strategy. We did not take
into account an increase in risk behaviour after ART start
[37] and we did not consider behavioural differences
that could result from different monitoring strategies
apart from adherence. For example, patients from CD4
monitoring sites with unobserved virological failure and
high CD4 cell counts may be more likely to engage in
unprotected sex because they are unaware of the risk of
transmitting the virus. If this was taken into account,
probably even more infections could be prevented by viral
load monitoring.

Similarly, we did not investigate the effect of possible
worse adherence in patients starting ART with higher
CD4 cell counts. The higher virological failure rates,
which remain partly undetected in CD4 sites, would
increase the benefit of viral load monitoring further. We
also did not consider (primary) drug resistance that could
complicate the treatment of newly infected individuals
[38]. The assumption that the virologic failure rate, due to
improved adherence counselling, would be 50% lower in
viral load sites compared to sites without viral monitoring
may appear high. It was an arbitrary choice that cannot be
verified in our data. But a recent systematic review has
shown that virologic failure rates vary substantially in sub-
Saharan Africa [39] and they are also highly variable in
viral load sites of the IeDEA-SA collaboration. Our
results are only applicable for short term. To investigate
the longer-term evolution of the epidemic, one would
need a dynamic transmission model in which susceptible
people get HIV infected and partnerships are modelled.

Our study was based on almost 10 000 adult patients from
two public sector treatment programmes in South Africa.
Results should, therefore, be applicable to many other
patients in the region most heavily affected by HIV. We
acknowledge that these treatment programmes will not
be representative of all programmes in southern Africa;
they are located in urban areas, are equipped with
electronic medical record systems, and have access to
regular CD4 cell determination, viral load monitoring
and second-line therapy.

The availability of viral load monitoring may have led
to an underestimation of immunologic failure rates, as
patients should have switched after detection of
virological failure. However, many patients never
switched and the median time to switching from the
estimated time of failure was 22 months. Moreover,
limitations in the data required us to make assumptions
about factors such as the effect of virological failure on
mortality and the effect of the delay between failure and
switching on second-line efficacy. However, in sensitivity
analyses we found that these assumptions had little effect

on the results (see web appendix, 4.1 for details, http://
links.Iww.com/QAD/A213).

The main barrier in providing routine viral load
monitoring is its high cost. A recent randomized
controlled trial estimated the difference in the unit cost
between viral load and CD4 measurement to be
approximately US$ 25. Therefore, the extra annual cost
of treating 1000 patients with two viral loads instead of
CD4 measurements per year would be about US$ 50 000.
The net cost of preventing a new infection depends on
the number of infections that can be prevented, as well as
the total cost of treating and managing a new HIV-
infected patient. In the United States, the discounted
lifetime cost of a new HIV infection has been estimated to
be over US$ 300000 [40]. In low-income countries,
these costs are much lower, for example, in Uganda, the
total cost of treating a patient with ART and CD4
monitoring for a year is US$ 467. Assuming that patients
spend on average at least 20 years on ART [41], the
lifetime treatment costs would be around US$ 10 000. A
detailed cost-eftectiveness analysis is needed to evaluate
whether routine viral load monitoring would be cost-
effective or even cost saving in the long term. Such an
analysis would, however, require more detailed infor-
mation on sexual behaviour.

Conclusion

After 15 years of ART and close to a decade of widespread
ART use in low-income settings, it is still not clear if,
when and how often viral load should be measured to
optimize treatment outcomes. We found that viral load
monitoring could be an important factor in reducing
mortality [14], and could prevent HIV infections.
Continuous evaluation of the role of routine viral load
monitoring in terms of costs and effectiveness is necessary
as new technologies are developed and new research
findings become available. We emphasize that although
the first priority should be providing ART, viral load
monitoring could provide an additional benefit for ART
as a preventive measure.
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