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Parasite clearance data from 18,699 patients with falciparum malaria treated with an artemisinin derivative
in areas of low ( ), moderate ( ), and high ( ) levels of malaria transmission acrossn p 14,539 n p 2077 n p 2083
the world were analyzed to determine the factors that affect clearance rates and identify a simple in vivo
screening measure for artemisinin resistance. The main factor affecting parasite clearance time was parasite
density on admission. Clearance rates were faster in high-transmission settings and with more effective partner
drugs in artemisinin-based combination treatments (ACTs). The result of the malaria blood smear on day 3
(72 h) was a good predictor of subsequent treatment failure and provides a simple screening measure for
artemisinin resistance. Artemisinin resistance is highly unlikely if the proportion of patients with parasite
densities of !100,000 parasites/mL given the currently recommended 3-day ACT who have a positive smear
result on day 3 is !3%; that is, for n patients the observed number with a positive smear result on day 3 does
not exceed .(n + 60)/24

Artemisinin-based combination treatments (ACTs) are

recommended for falciparum malaria throughout the

tropical world [1]. Stable resistance to artemisinin and
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its derivatives is very difficult to induce in the labo-

ratory, and until recently there were no substantiated

reports of resistance in the treatment of malaria [2].

Resistance to chloroquine, sulfadoxine-pyrimethamine,

and mefloquine were first reported close to the Thai-
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Cambodian border [3–8]. From the same geographic area, there

is now evidence of reduced susceptibility to artemisinin deriv-

atives and ACTs with prolonged parasite clearance times and

day 42 failure rates up to 20% for artesunate-mefloquine and

day 28 failure rates between 13% to 29% for artemether-lu-

mefantrine [2, 9–14]. If artemisinin resistance were to spread

as resistance to chloroquine and sulfadoxine-pyrimethamine

has spread before, it would threaten malaria control and se-

riously challenge current initiatives to eliminate malaria. At

present, there is no validated molecular marker or in vitro test

of artemisinin resistance. We have examined the largest avail-

able database of antimalarial clinical trials [15] and detailed

studies of patients with hyperparasitemia to characterize par-

asite clearance after treatment with artemisinin derivatives. The

objective was to identify a simple indicator that could be used

to screen for artemisinin resistance during standard in vivo

efficacy studies and surveillance programs.

METHODS

Background

In 2002, a group of investigators conducting antimalarial drug

studies decided to pool their data on therapeutic responses in

uncomplicated falciparum malaria obtained in diverse geo-

graphic locations with differing malaria transmission intensities

[15]. The objective was to characterize the efficacy of different

antimalarial drug treatments and to determine the effects of

covariates (such as transmission intensity, age, and parasite

density) on therapeutic responses. This will now be incorpo-

rated into the Worldwide Antimalarial Resistance Network, or

WWARN [16]. In total, data on 31,708 individual patients from

85 prospective studies conducted in 25 countries were pooled

and analyzed. Of these patients, 17,546 (55%) received an ar-

temisinin derivative, either alone or in combination with a more

slowly eliminated antimalarial drug. Many clinical trials ex-

cluded patients with high parasite densities. Because the decline

in parasite density after antimalarial treatment is exponential

(a first-order process) [17–19], the parasite clearance time is

directly proportional to the logarithm of the initial parasite

count; thus, excluding hyperparasitemia creates a potential con-

founder. To investigate this further, a large data set for patients

studied on the northwestern border of Thailand with parasi-

temia levels of 14% (termed hyperparasitemia in this article)

was also studied. The overall objective of this analysis was to

provide a statistical basis for prospectively characterizing in vivo

resistance to artemisinin and its derivatives.

Clinical and Parasitological Data

Two sources of data were used for this analysis.

World Health Organization Special Programme on Re-

search and Training in Tropical Diseases and Wellcome Trust

pooled malaria database. The World Health Organization

(WHO) Special Programme on Research and Training in Trop-

ical Diseases and Wellcome Trust (TDR-WT) pooled malaria

database comprises data on patients from 85 studies conducted

between 1991 and 2005 in 25 countries. Areas of transmission

intensity were categorized as high (estimated entomological in-

oculation rate, 125 infectious bites/person/year), moderate (2–

25 infectious bites/person/year), and low (!2 infectious bites/

person/year) [15]. Parasite densities were available at enroll-

ment (day 0) and then on days 1 (ie, ∼24 h after the start of

treatment), 2, 3, and 7, although the exact times of measure-

ment were usually not recorded.

Shoklo Malaria Research Unit hyperparasitemia database.

Data from patients in the Shoklo Malaria Research Unit

(SMRU) hyperparasitemia database who were admitted with

levels of parasitemia of 14% between January 2001 and June

2008 ( ) were analyzed. Parasite counts were measuredn p 1687

every 6 h until clearance. Exact blood sampling times were

recorded.

Blood smears were stained with Giemsa stain, and parasites

were counted on the thin or thick smear against 1000 red blood

cells or 1000, 500, or 200 white blood cells. The number of

parasites per microliter was calculated using measured individ-

ual hematocrit values for thin smears or by assuming a white

blood cell count of 8000 cells/mL for thick smears. Other data

collected included demographic characteristics (age, weight,

sex, etc), treatment and doses given, and information on symp-

toms, signs, temperature, gametocytemia, and hematological

and biochemical data. Recurrence of parasitemia during the

follow-up period, together with polymerase chain reaction

(PCR) genotyping results, were recorded for patients in the

TDR-WT database but were not routinely recorded for patients

in the SMRU hyperparasitemia database.

Statistical Analysis

Since areas of different transmission intensity differ with respect

to patient populations, antimalarial treatment, and length of

follow-up, all analyses (unless specified) were performed sep-

arately for each level of transmission intensity. This stratifica-

tion was defined a priori.

Parasite positivity rates (PPRs), or the proportions of patients

with parasitemia, were recorded on days 1, 2, and 3. Overall

PPRs were calculated as a weighted average of study treatment

arm–specific proportions. Confidence intervals (CIs) were es-

timated using a method for clustered data described by Fleiss

et al [20]. The PPRs were compared between groups of studies

(determined by region or treatment) by the F test, using

grouped logistic regression. CIs for ordinary proportions were

calculated using the Wilson method [21].

Associations between positive parasite counts on day 2 or 3

and subsequent recrudescence of infection were assessed by

comparison of the cumulative recrudescence proportions, es-
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Table 1. Patient Characteristics

Characteristic

TDR-WT databasea

SMRU HPLow Moderate High SMRU

No. treated with

Artemisinin derivatives 3867 2077 2083 8984 1590

Artesunate 2123 1825 1881 6185 1590

Dihydroartemisinin 731 252 0 684 0

Artemether 434 0 202 2115 0

Artemisinin 579 0 0 0 0

Years of study 1994–2004 1998–2004 1999–2005 1991–2005 2001–2007

Age

Median (range), years 16 (1–80) 3 (0.3–65) 2 (0.1–47) 16 (0.2–84) 12 (0.1–63)

!5 years 614 (16) 1595 (77) 1895 (91) 858 (10) 425 (27)

5–15 years 1255 (32) 442 (22) 179 (9) 3333 (37) 529 (33)

115 years 1998 (52) 40 (2) 9 (0.5) 4793 (53) 623 (39)

Admission parasite density, median
(range), parasites/mL

10,468
(8–1,365,523)

25,600
(31–1,787,040)

23,920
(71–540,784)

7448
(7–1,528,753)

271,422
(18,840–2285,920)

Patients with hyperparasitemia (1175,000 parasites/mL) 55 (1) 131 (6) 45 (2) 442 (5) 1395 (88)

NOTE. Data are no. (%) of patients, unless otherwise indicated. Categories are as follows: low, low-transmission areas (!2 infectious bites/person/
year), excluding Shoklo Malaria Research Unit (SMRU) studies; moderate, moderate-transmission areas (2–25 infectious bites/person/year); high, high-
transmission areas (125 infectious bites/person/year); SMRU, the uncomplicated malaria studies conducted by the SMRU; SMRU HP, the hyperpar-
asitemic (parasitemia level, 14%) malaria study conducted by the SMRU.

a World Health Organization Special Programme on Research and Training in Tropical Diseases and Wellcome Trust (TDR-WT) pooled malaria
database.

timated using the Kaplan-Meier method. Patients with missing

PCR results were excluded, and patients who were lost to fol-

low-up or who had new infections during follow-up were cen-

sored at the last follow-up visit. Studies without PCR geno-

typing were excluded from this analysis.

The terminal relationship between log-transformed parasite

density and time was assumed to be linear [17]. Therefore, if

the lower limit of microscopic detection is 50 parasites/mL, P

is the admission parasite density, k is the first-order clearance

rate constant, and T is the time to parasite clearance then

. As a consequence, the admission par-T p (log P � log 50)/k

asite density (P) affects the time of clearance and the probability

of having a positive count at any specified time. Parasite clear-

ance rate constants (k) for artesunate alone were estimated from

patients in the SMRU hyperparasitemia database, who received

artesunate only during the first 48 h, analyzing the slope of the

log parasite count–time relationship for each patient from lin-

ear regression fits, using all measurements taken up to 48 h.

The effects of parasite count and other covariates on the

probability of parasite clearance by day 3 were investigated for

all patients receiving antimalarial treatments currently rec-

ommended by the WHO by logistic regression and were ex-

pressed as odds ratios (ORs) and 95% CIs. Random-effects

models were used to account for the heterogeneous nature of

the data and were fitted separately within each transmission

intensity stratum. A pooled model was also fitted, using data

from patients who received treatments that were common in

at least 2 areas of different endemicity. Because recent evidence

has indicated that parasite clearance times have been increasing

on the western border of Thailand since 2001 [22], the data

from SMRU patients were analyzed separately from the other

data sets.

In all analyses, patients who received a blood transfusion

were excluded. No patients in the TDR-WT database received

blood, whereas 97 patients with hyperparasitemia in the SMRU

database (6% of 1687 patients in the SMRU hyperparasitemia

database and 5% of all 2068 patients with hyperparasitemia)

received transfusions. In the TDR-WT database, patients who

received rescue treatment after experiencing early treatment

failure were censored at the time of retreatment. In the SMRU

hyperparasitemia database, parasite counts were also available

after the rescue treatment. Because these patients had the long-

est initial parasites clearance times, they were included in the

analysis, but the characteristics of parasite clearance (PPR and

clearance rate) are contrasted with those of other patients.

RESULTS

In total, 18,699 patients treated with an artemisinin derivative

were included in this analysis: (1) 8984 with uncomplicated

malaria studied by the SMRU and included in the TDR-WT

database; (2) 8027 from studies in other countries included in

the TDR-WT database (3867 in low-transmission areas, 2077

in moderate-transmission areas, and 2083 in high-transmission

areas); and (3) 1590 with hyperparasitemia studied by the

SMRU (Table 1). The artemisinin derivative was given either
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Table 2. Antimalarial Treatments Administered

Treatment No. of patients treated

Artemisinin derivative Partner drug (target total dose)
Artemisinin derivative dosage

(units per day; target unit dose) Total Low Moderate High SMRU
SMRU

HP

Artemether None 7 days (4, 2, 2, 1, 1, 1, 1; 1 mg/kg) 206 206

Mefloquine (25 mg/kg) 1 day (10 mg/kg) 19 19

3 days (1, 1, 1; 4 mg/kg) 404 224 180

Lumefantrine (43.2 mg/kg) 3 days (2, 1, 1; 1.8 mg/kg) 175 175

Lumefantrine (64.8 mg/kg) 3 days (2, 2, 2; 1.8 mg/kg) 1826 210 202 1414

Lumefantrine (75.6 mg/kg) 5 days (2, 2, 1, 1, 1; 1.8 mg/kg) 121 121

Artemisinin None 5 days (2, 1, 1, 1, 1; 10 mg/kg) 114 114

7 days (2, 1, 1, 1, 1, 1, 1; 10 mg/kg) 112 112

Mefloquine (375 or 500 mg) 1 day (500 mg) 117 117

Quinine (30 or 50 mg/kg) 1 day (20 mg/kg) 184 184

Doxycycline (12 mg/kg) 1 day (20 mg/kg) 52 52

Artesunate None 3 days (1, 1, 1; 4 mg/kg) 4 4

5 days (2, 1, 1, 1, 1; 2 mg/kg) 80 80

5 days (1, 1, 1, 1, 1; 2 mg/kg) 42 42

7 days (2, 2, 2, 2, 2, 1, 1; 1 mg/kg) 403 403

7 days (4, 2, 2, 1, 1, 1, 1; 1 mg/kg) 120 33 87

7 days (2, 1, 1, 2, 2, 2, 2; 1 mg/kg) 2 2

Mefloquine (15 mg/kg) 1 day (4 mg/kg) 641 641

Mefloquine (25 mg/kg) 1 day (10 mg/kg) 322 322

1 day (4 mg/kg) 231 206 25

3 days (1, 1, 1; 4 mg/kg) 5296 939 4357

5 days (2, 1, 1, 1, 1; 2 mg/kg) 49 49

7 days (4, 2, 2, 1, 1, 1, 1; 1 mg/kg) 1437 134 1303a

Sulfadoxine-pyrimethamine (25/1.25
mg/kg)

1 day (4 mg/kg) 669 318 351

3 days (1, 1, 1; 4 mg/kg) 1076 143 585 349

Amodiaquine (30 mg/kg) 3 days (1, 1, 1; 4 mg/kg) 1874 120 922 832

Chloroquine (25 mg/kg) 3 days (1, 1, 1; 4 mg/kg) 423 74 349

Atovaquone-proguanil (135/72 mg/kg) 3 days (1, 1, 1; 4 mg/kg) 526 526

Antibioticsb 7 days 197 21 176

DHA Piperaquine (50.4 mg/kg) 3 days (1, 1, 1; 2.1 mg/kg) 851 437 252 162

Piperaquine (51.2 mg/kg) 3 days (2, 1, 1; 1.6 mg/kg) 560 212 348

Piperaquine, trimethoprim, primaquine
(12.3/3.5/0.2 mg/kg for 3 days)

3 days (2, 1, 1; 1.2 mg/kg) 82 82

DHA plus artesunate Piperaquine (51.2 mg/kg) 3 days (2, 1, 1; 4 mg/kg) 174 174

NOTE. Categories are as follows: low, low-transmission areas (!2 infectious bites/person/year), excluding Shoklo Malaria Research Unit (SMRU)
studies; moderate, moderate-transmission areas (2–25 infectious bites/person/year); high, high-transmission areas (125 infectious bites/person/year);
SMRU, the uncomplicated malaria studies conducted by the SMRU; SMRU HP, the hyperparasitemic (parasitemia level, 14%) malaria study conducted
by the SMRU.

a Mefloquine was given at 48 and 72 h.
b Tetracycline, doxycycline, or clindamycin.

alone (817 [9%], 226 [3%], and 87 [6%] patients in the 3

groups delineated above, respectively) or, more typically, as part

of an ACT (Table 2). Rescue treatments were given to 66 (4%)

of the 1590 patients with hyperparasitemia studied by the

SMRU and to 48 (0.3%) of the 17,011 patients in the TDR-

WT database who experienced early treatment failure or de-

veloped severe malaria. These patients were censored at the

time of treatment failure. Similarly, an additional 21 patients

for whom parasitemia persisted until day 7 were censored on

day 7.

Parasite Positivity Rates

On admission, the median parasite density was par-41.2 � 10

asites/mL (range, limit of detection to parasites/mL)61.8 � 10

among patients with uncomplicated malaria and was 52.7 � 10
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Table 3. Measures of Parasite Clearance

Day, result

TDR-WT databasea

SMRU HP
(n p 1590)

Low
(n p 3867)

Moderate
(n p 2077)

High
(n p 2083)

SMRU
(n p 8984)

Day 1
Positive 1751 815 739 5235 1527
Negative 877 350 394 3287 37
Missing 1239 912 950 462 26

PPR (95% CI), %b 67 (59–74) 70 (59–81) 65 (60–70) 61 (54–69) 98 (97–98)
Day 2

Positive 351 301 191 906 1014
Negative 2256 1486 1851 7569 508
Missing 1260 290 41 509 68

PPR (95% CI), %b 13.5 (9.4–17.5) 16.8 (9.2–24.4) 9.4 (5.6–13.1) 10.7 (7.8–13.6) 67 (64–69)
Day 3

Positive 78 69 41 107 355
Negative 2581 1958 2021 8267 1124
Missing 1208 50 21 610 111

PPR (95% CI), %b 2.9 (2.0–3.9) 3.4 (0–7.4) 2.0 (0.6–3.3) 1.3 (0.8–1.8) 24 (22–26)

NOTE. Data are no. of patients, unless otherwise indicated. Categories are as follows: low, low-transmission areas (!2 infectious bites/
person/year), excluding Shoklo Malaria Research Unit (SMRU) studies; moderate, moderate-transmission areas (2–25 infectious bites/person/
year); high, high-transmission areas (125 infectious bites/person/year); SMRU, the uncomplicated malaria studies conducted by the SMRU;
SMRU HP, the hyperparasitemic (parasitemia level, 14%) malaria study conducted by the SMRU.

a World Health Organization Special Programme on Research and Training in Tropical Diseases and Wellcome Trust (TDR-WT) pooled malaria
database.

b The parasite positivity rate (PPR) was adjusted for study intracorrelation.

Figure 1. Cumulative risk of recrudescence for patients with a negative (circles) or positive (squares) parasite count on day 1 (A), day 2, (B), and
day 3 (C). SMRU, Shoklo Malaria Research Unit.

parasites/mL (range, to parasites/mL) among5 61.9 � 10 2.3 � 10

patients with hyperparasitemia in the SMRU database (Table 1).

Parasite clearance times were significantly faster in patients with

lower initial densities ( ). Parasitological responses to ar-P ! .001

temisinins, either alone or in combination, were slightly faster

in high-transmission areas than elsewhere (Table 3), but the dif-

ferences between areas were not statistically significant. Excluding

the SMRU studies, estimated PPRs on day 3 among all patients

with uncomplicated malaria treated with artemisinin derivatives

were 2.0% (95% CI, 0.6%–3.3%) in the high-transmission areas,

3.4% (95% CI, 0%–7.2%) in the moderate-transmission areas,

and 2.9% (95% CI, 2.0%–3.9%) in the low-transmission areas

( ). For patients with hyperparasitemia ( ), theP p .364 n p 1583

PPR at 72 h was much higher—24% (95% CI, 22%–26%), de-

creasing to 5.5% (95% CI, 4.5%–6.8%) at 96 h. Of these patients,

66 received rescue treatment; their PPRs at 72 h (44% [95% CI,

33%–57%]) and at 96 h (13% [95% CI, 7%–24%]) were sig-

nificantly higher than those for the other patients ( andP ! .001

, respectively).P p .006
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Figure 2. Relationship between enrollment parasite density and the
proportion of patients with parasitemia on day 3 after the start of treat-
ment with artemisinin derivatives, estimated using logistic regression
with random effects for study site. The outer dashed and continuous
lines represent 95% and 99% confidence intervals.

Predictors of Subsequent Recrudescence

The presence of parasites on day 3 (ie, ∼72 h after the start of

treatment) emerged as the best determinant of subsequent re-

crudescence (Figure 1). In low- and moderate-transmission ar-

eas, the risk of recrudescent parasitemia was !5% in patients

who cleared parasitemia by day 3. In contrast, among patients

with parasitemia on day 3 this risk was 12%, 34%, and 16%

in low-transmission areas, in moderate-transmission areas, and

among the SMRU patients with uncomplicated malaria, re-

spectively ( for all) (Figure 1C). In the high-transmis-P ! .001

sion areas, rates of recrudescence for both groups of patients

were higher, but patients with detectable parasitemia on day 3

still had double the risk of recrudescent parasitemia compared

with patients who were parasite negative on day 3 ( ).P p .118

The positive predictive value of parasite positivity on day 3 in

predicting treatment failure is equal to the estimated risks of

failure described above, and the negative predictive value is

equal to risk of success in patients with a negative count on

day 3 (97.5%, 95%, 90%, and 95%, respectively) (Figure 1C).

Parasite Clearance Rate Constants

The parasite clearance rate constant (k) could be estimated in

1570 individuals in the SMRU hyperparasitemia database; in

95% ( ), the linear regression fit was satisfactory (me-n p 1495

dian ). Among these patients, the median slope was2R p 0.92

estimated to be 0.097 per 1 h (range, 0.015–0.333 per 1 h) and

had a symmetrical distribution (mean, 0.101; standard devia-

tion, 0.032). Parasite clearance rate constants did not correlate

with initial parasitemia ( ; ). These slope valuesr p .010 P p .71s

correspond to a median half-life of 3.1 h (range, 0.9–19.4 h)

or parasite reduction rates ranging from 1.25 to 2.15/h. Para-

site clearance among the 63 patients who received rescue treat-

ment was significantly slower than that among the remain-

der, with a median half-life of 3.6 h (range, 2.4–11.8 h) and a

median parasite reduction rate of 1.21/h (range, 1.06–1.33/h)

( ).P ! .001

Analysis of Covariates Affecting Parasite Clearance

The OR for failure to clear parasitemia by day 3 per 10-fold

increase in admission parasite density was 3.862 (95% CI,

1.712–8.714) in high-transmission areas ( ), 1.689P p .001

(95% CI, 1.041–2.739) in moderate-transmission areas (P p

), and 4.446 (95% CI, 2.813–7.027) in low-transmission.034

areas ( ), respectively. Similar values were obtained forP ! .001

SMRU patients—an OR of 2.480 (95% CI, 1.849–3.326) for

patients with uncomplicated malaria and of 4.191 (95% CI,

2.467–7.121) for the patients with hyperparasitemia (P ! .001

for both) (Figure 2).

Data on spleen examination were available for 11,340 pa-

tients (8699 SMRU patients and 448, 1145, and 1048 patients

in the low-, moderate-, and high-transmission areas); there was

no difference in parasite clearance rates among patients with

or without splenomegaly in each area. No other patient or

disease characteristics (age, sex, presence of gametocytes on

enrollment) were associated independently with the probability

of parasitemia persisting to day 3. The heterogeneity between

studies within each area was statistically significant (P ! .001

for all). The duration of artemisinin treatment (1 or �3 days)

and the partner drug administered were important determi-

nants of parasite clearance rates. Overall, 5.8% (108/1849; 95%

CI, 1.6%–10.0%) of patients who received artemisinin treat-

ment for 1 day had parasitemia on day 3, compared with 1.4%

(187/13,097; 95% CI, 1.0%–1.8%) of patients treated with ar-

temisinin for �3 days ( ), although the rates varied be-P ! .001

tween partner drugs (Table 4).

Effects of Partner Drugs

Low-transmission areas. PPRs obtained for artemether-lu-

mefantrine, mefloquine-artemether/artesunate or dihydroar-

temisinin-piperaquine, after adjustment for initial parasite den-

sity, were each significantly lower than those for treatments

with artesunate combined with the less efficacious partners

amodiaquine or chloroquine (overall OR, 0.148 [95% CI,

0.057–0.387]; ). Within these 2 groups of treatments,P ! .001

the PPRs were not significantly different. PPRs for artesunate

and sulfadoxine-pyrimethamine were higher than for meflo-

quine-artemether/artesunate (OR, 0.117 [95% CI, 0.019–

0.716]) but were not significantly different from other treat-

ments. After adjustment for treatments and parasite densities,

there was no heterogeneity between study sites ( ).P p .447

Among SMRU patients, there were no significant differences

between PPRs with different 3-day treatments (test for hetero-

geneity between studies, ).P ! .001

Moderate-transmission areas. After adjustment for the
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Figure 3. Relationship between sample size and the upper limit of the
number of patients with a positive parasite count on day 3 for which
the null hypothesis of a true positivity rate of 2% (circles), 3% (triangles),
or 4% (squares) cannot be rejected, based on Wilson 95% confidence
intervals.

study year and initial parasite density, PPRs were significantly

different only between patients treated with artesunate and sul-

fadoxine-pyrimethamine and those treated with artesunate-am-

odiaquine (OR, 0.242 [95% CI, 0.084–0.696]; ; testP p .009

for heterogeneity, ).P p .497

High-transmission areas. In terms of day 3 PPRs, treat-

ment with artesunate-amodiaquine was more effective than

treatment with artesunate and sulfadoxine-pyrimethamine

(OR, 5.729 [95% CI, 1.473–22.287]; ) or with arte-P p .012

sunate–chloroquine (OR, 9.167 [95% CI, 2.541–33.061]; P p

; test for heterogeneity, ). Artemether-lumefantrine.001 P p .391

also had significantly lower PRRs than did these 2 latter treat-

ments ( and ; OR not calculable because noP p .050 P p .006

patients had detectable day 3 parasitemia after treatement with

artemether-lumefantrine), which were not statistically different

from artesunate-amodiaquine PPRs.

Among 3-day treatments assessed in at least 2 different trans-

mission intensity areas (excluding SMRU patients since the time

trend was different from the other areas), after adjustment for

year of study and initial parasite density and stratifying for

treatment, the combined risk for a positive parasite smear on

day 3 was highest in low-transmission settings (OR for high-

transmission area, 0.223 [95% CI, 0.103–0.480]; OR for mod-

erate-transmission area, 0.360 [95% CI, 0.159–0.818]; P p

). Artesunate-chloroquine gave the highest day 3 positivity.001

rates (OR for dihydroartemisinin-piperaquine, 0.174 [95% CI,

0.053–0.572]; OR for artesunate-amodiaquine, 0.693 [95% CI,

0.294–1.636]; OR for artesunate and sulfadoxine-pyrimeth-

amine, 0.308 [95% CI, 0.136–0.698]; OR for artemether-lu-

mefantrine, 0.307 [95% CI, 0.094–1.002]; , likelihoodP p .003

ratio test). No relationship was found between total dose of

artemisinin or artemisinin derivative received on the first day

of treatment or overall and the proportion of positive patients

on day 3. Heterogeneity between studies was not significant

( ).P p .143

Derivation of a Simple In Vivo Parasitological Definition of
Susceptibility to Artemisinins

Additional analysis was restricted to patients who received ar-

temisinin-derivative regimens currently recommended by the

WHO for 3 days or longer (ie, studies with artesunate, artem-

ether, or dihydroartemisinin). Because parasite clearance times

increased significantly in the SMRU studies after 2001, only

patients from SMRU studies treated before 2001 were included

in this analysis.

Among patients with admission parasite densities between

10,000 and 100,000 parasites/mL treated for at least 3 days with

artemisinin derivatives, only 1.2% (53/4535; 95% CI,

0.7%�1.6%) had detectable parasitemia on day 3—1.7% (14/

830; 95% CI, 0.7%�2.7%) in low-transmission areas, 1.5% (13/

863; 95% CI, 0.3%–2.7%) in moderate-transmission areas, 1.2%

(14/1152; 95% CI, 0.2%–2.3%) in high-transmission areas, and

0.7% (12/1690; 95% CI, 0.3%–1.1%) in studies conducted by

the SMRU before 2001.

Using the highest value of the upper 95% CI bound (∼3%)

in patients with parasite densities of !100,000 parasites/mL, the

probability of observing 7 or more patients with positive day 3

parasitemia in a clinical trial of 100 patients with parasite densities

of !100,000 parasites/mL would be 0.03. For sample sizes of !12,

no patients should have positive day 3 parasitemia ( ) ifP ! .05

the true positivity rate on day 3 is �3%. (Figure 3).

For a true positivity rate of !3%, a simple method to calculate

the maximum number of patients with positive day 3 parasi-

temias for studies with �50 patients is the following: the num-

ber of patients with positive day 3 parasitemias (n) should not

exceed .(n + 60)/24

Among 48 study arms with WHO-recommended treatments

(excluding SMRU studies) and including only patients with

enrollment parasite counts between 10,000 and 100,000 para-

sites/mL, 2 had 95% CI lower limits for day 3 PPRs of 13%.

Both were relatively ineffective regimens—artesunate-chloro-

quine in a high-transmission area, and artesunate and sulfa-

doxine-pyrimethamine in a low-transmission area.

DISCUSSION

Parasite clearance can be analyzed in a number of different

ways, depending in part on the frequency with which parasite

densities are measured. If blood smears are done frequently

enough, as in some research studies, clearance can be assessed

as a continuous variable (ie, the continuous relationship be-

tween log parasite density and time). Alternatively, the pro-

portion of patients who remain parasite positive (taken as a
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parasite density of �50 parasites/mL) at different time points

can be assessed. The latter is simpler and therefore more suitable

for routine monitoring. In the majority of clinical trials and in

clinical practice, parasite densities are measured once daily or

less.

Acceleration of parasite clearance is the pharmacodynamic

hallmark of the artemisinin derivatives [18]. It results from the

killing of circulating ring-stage parasites before they cytoadhere

and their subsequent removal by the spleen [23–25]. The other

antimalarial drugs have relatively little or no effects on these

young circulating parasites [26, 27] and do not prevent cyto-

adherence in Plasmodium falciparum infections [28]. The rate

of parasite clearance can therefore be used as a measure of the

artemisinin pharmacodynamic effect in vivo [19]. Artemisinin

resistance is characterized by prolongation in parasite clearance

times [14]. The parasite clearance time is the interval from the

start of treatment to the time at which parasite densities fall

below the lower limit of detection by light microscopy, which

corresponds to a residuum of ∼100,000,000 parasites in the

body of an adult [29]. Because parasite clearance after arte-

misinin treatment is rapid, most patients have cleared their

peripheral parasitemia by day 3 (∼72 h) after the start of treat-

ment. Those few with persistent parasitemia represent a com-

posite of those with the highest starting densities and the tail

of a distribution of clearance rates. Artemisinin resistance is

therefore associated with an increase in this proportion [14].

In the present very large series, !5% of patients with pretreat-

ment densities of !100,000 parasites/mL had detectable para-

sitemias on day 3, compared with 25% of patients with par-

asitemia levels of 14% (corresponding to 1100,000 parasites/

mL). Thus, clearance time needs to be adjusted for the starting

parasite density. With this caveat, the proportion of patients

with positive blood smear results on day 3 can be used as a

simple measure of artemisinin susceptibility in vivo.

It had been assumed previously that the partner drug would

have a negligible effect on parasite clearance after administra-

tion of ACT, but the slower responses in patients receiving

artesunate-chloroquine than other 3-day ACT regimens with a

similar dose of artesunate, as well as the generally more rapid

clearance with more effective ACTs (artesunate-mefloquine, di-

hydroartemisinin-piperaquine, and artemether-lumefantrine),

suggests that a significant contribution is made by the partner

drug. The significantly higher day 3 positivity rates with 2 mg/

kg/day artesunate, artemether, or artemisinin monotherapy reg-

imens further supports the notion that the ACT partner drug

contributes to parasite clearance, although 2 mg/kg may not

provide maximal ring-stage parasite killing in all patients. The

importance of providing more than a single dose of an arte-

misinin derivative is emphasized by the slower parasite clear-

ance with 1-day regimens.

Immunity contributes to the antimalarial therapeutic re-

sponse. Although differences were small, parasite clearance was

slowest in the low-transmission settings and most rapid in high-

transmission settings even with relatively ineffective partner

drugs, suggesting that the splenic clearance process for the killed

ring-stage parasites may be enhanced. Splenomegaly per se was

not associated with accelerated parasite clearance, but splenic

structural reorganization and activation in high-transmission

areas together with antibody production may enhance clearance

function in acute infections.

The day 3 parasite count proved a useful predictor of ther-

apeutic response. Previous studies with monotherapies have

shown the value of prolonged parasite clearance in predicting

subsequent recrudescence. With mefloquine treatment, persis-

tence of parasitemia to day 4 proved to be the best determinant

of treatment failure [30]. Slow parasite clearance reflects a re-

duced contribution of the artemisinin component of an ACT

to overall parasite killing, leaving a larger biomass for the part-

ner drug to remove [29].

Recent data from the Thai-Cambodian border suggest that

artemisinin resistance in P. falciparum malaria has developed

there [2, 13]. This may be a multistage process. It is imperative

to determine whether resistance has spread beyond this region

or emerged independently elsewhere. The day 3 parasite count

is a simple measure that can be followed routinely in in vivo

monitoring studies. In a clinical study of n patients presenting

with parasite densities of !100,000 parasites/mL, if the number

who still have parasitemia on day 3 (72 h) after the start of

treatment with ACT exceeds , then additional, more(n + 60)/24

detailed investigations may be warranted.
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