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Abstract. 

Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the 

partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum 

multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of 

these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not 

been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods 

from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships 

between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. 

Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 – 9.78, P < 0.001) and 

increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36–17.97, P < 0.001) were 

significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective 

effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of 

drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence 

of at least pfcrt K76T and pfmdr1 N86Y should now be routine. 

INTRODUCTION 

Recent successes in malaria control have depended on the use of highly efficacious artemisinin 

combination therapies (ACTs) for first-line treatment of uncomplicated Plasmodium falciparum malaria. 

Adequate clinical and parasitologic cure by ACTs relies on the rapid reduction in parasite biomass by the 

potent, short-acting artemisinin component
1–3

 and the subsequent elimination of residual parasites by the 

longer-acting partner drug. The two most commonly used ACTs worldwide are artemether-lumefantrine 

(AL) and artesunate-amodiaquine (ASAQ).
4
 Polymerase chain reaction (PCR)–adjusted efficacy for both 

combinations remains high in most regions.
5–7

 However, there have been some reports of decreasing AL 

cure rates in Africa
8–11

 and Asia,
12

 and reports of high levels of treatment failures of ASAQ.
13–18

 

Resistance to ACT partner drugs has historically manifested before that of artemisinins, whose short half-

lives result in the exposure of residual parasites to sub-therapeutic levels of the partner drug alone. 

Response to the partner drug is therefore a key component of overall ACT efficacy. 

Mutations in the gene encoding the P. falciparum chloroquine resistance transporter (pfcrt) are 

associated with chloroquine resistance
19

; a change from lysine to threonine at codon 76 in pfcrt predicts 

responses of parasites to chloroquine.
20,21

 In the presence of pfcrt 76T, chloroquine resistance is 

modulated by point mutations in the gene that encodes the P. falciparum multidrug resistance transporter 

1 (pfmdr1), primarily at codon 86
22,23

 and also by mutations at positions 1034, 1042, and 1246.
24

 

Decreased susceptibility to lumefantrine has been linked to polymorphisms in these two genes.
25–35

 

Increased pfmdr1 copy number, which confers resistance to mefloquine,
36

 has also been associated with 

reduced susceptibility to lumefantrine.
37–40

 

Studies of amodiaquine have demonstrated reduced in vivo response
41–43

 and increased 50% inhibitory 

concentration values in vitro, in association with the presence of pfmdr1 86Y and pfcrt 76T alleles.
44,45

 

Selection of these alleles in recurrent parasites after treatment with amodiaquine alone or in combination 

with artesunate has been observed in a number of studies.
28,46–51

 It has also been suggested that parasites 

that carry chloroquine-resistant pfmdr1 alleles may be more susceptible to artesunate in classical in vitro 

assays,
24,52

 an effect that could counteract the increased risk of amodiaquine failure when these drugs are 

combined in ASAQ. 



Currently, AL and ASAQ retain high clinical efficacy with few recrudescent infections, and individual 

studies generally lack sufficient statistical power to assess the association between parasite genotypes and 

outcomes of clinical treatment. Such an assessment is a critical step in validating molecular changes in 

parasite populations as useful markers of early signs of changing parasite susceptibility to lumefantrine or 

amodiaquine. To overcome these challenges, individual patient data on in vivo antimalarial efficacy and 

molecular markers of P. falciparum from 31 clinical trials were standardized, pooled, and > 7,000 patient 

responses were analyzed to determine whether patients infected with parasites that carry these 

polymorphisms are at increased risk of treatment failure. This large data set also provided the opportunity 

to examine the effects of AL and ASAQ treatment on selection in parasites of particular alleles of pfcrt 

and pfmdr1. 

METHODS 

Selection and inclusion of data. 

Prospective clinical efficacy studies of P. falciparum treatment with AL (six-dose regimen) or ASAQ 

(three-day fixed dose or loose/co-blistered regimen) with a minimum of 28 days of follow-up and 

genotyping of pfcrt and/or pfmdr1 were sought for the analysis. Studies were identified by a systematic 

PubMed literature review using the search terms (artesunate AND amodiaquine) OR (artemether AND 

lumefantrine) OR (ACT) AND (pfmdr1 OR pfcrt). Abstracts and text were screened to determine whether 

inclusion criteria were met. Unpublished datasets were also solicited and included in the analysis. 

Individual anonymized patient data including baseline characteristics, drug intake, parasite density and 

temperature were collected. All but one study included parasite genotyping to identify recrudescent 

infections of P. falciparum, and all studies assessed the presence of pfcrt and/or pfmdr1 polymorphisms 

(single nucleotide polymorphisms (SNPs) and copy number variation) in parasites isolated from patients 

on day 0. Multiplicity of infection and molecular resistance marker data from other days including the day 

of microscopic recurrent parasitemia were included but were not a prerequisite for study inclusion. 

Metadata on study location, study design, drugs, and dosing regimens were also gathered. A schematic of 

the patient numbers and overall flow of the study is shown in Figure 1. 

Data curation and generation of variables. 

All data sets were uploaded to the WorldWide Antimalarial Resistance Network repository and 

standardized by using the WorldWide Antimalarial Resistance Network Data Management and Statistical 

Analysis Plans (DMSAP).
53,54

 Outcome status and censoring were defined according to the Clinical 

DMSAP.
53

 Parasites that recurred within the follow-up period were classified using World Health 

Organization guidelines
55

: microscopically detected infections during follow-up were classified as 

recurrent; recurrent infections sharing with blood samples taken at day 0 PCR bands in polymorphic 

merozoite antigens or microsatellite fragment sizes were classified as recrudescent, and recurrent 

infections not sharing PCR bands or microsatellite fragment sizes with blood samples taken at day 0 were 

classified as re-infections (new infections). Molecular markers were coded as either single or mixed allele 

genotypes in the case of SNPs and as mean copy number per sample for copy number polymorphisms. 

Multi-SNP haplotypes were reconstructed as described in the Molecular DMSAP.
56,57

 

Statistical analysis. 

All statistical analyses were conducted by using Stata 11 (StataCorp LP, College Station, TX). The 

primary endpoint was clinical efficacy, defined as the PCR-adjusted risk of P. falciparum recrudescent 

infections. The cumulative risk of recrudescence at day 28 and day 42 was computed by using survival 

analysis (Kaplan-Meier estimates [K-M]). Comparisons of K-M survival curves were performed by using 

log rank tests stratified by study sites. 

Multivariable analysis of risk factors associated with PCR-adjusted recrudescence was conducted by 

using Cox proportional hazards regression models with shared frailty parameters to adjust for site-specific 

effects. The risk factors that affect the clinical efficacy of AL and ASAQ have been intensively studied in 



pooled analyses of both ACTs. Sixty-two studies with 14,651 patients treated with AL and 39 studies with 

8,337 patients treated with ASAQ were analyzed; these full analyses have been submitted for publication. 

The univariable and multivariable risk factors identified in those studies are shown in Supplemental 

Tables 1 and 2. Clinical covariates in the current study were included based on the previous analyses as 

follows: (lumefantrine or amodiaquine dose, enrolment parasitemia, age category, and ASAQ fixed or co-

blistered versus loose formulation (Table 1). Each molecular marker was then added to the model. The 

proportional hazard assumption was tested based on Schoenfeld residuals of Schoenfeld.
58

 In the case of 

non-proportionality, interactions with a categorized time variable based on clinical follow-up intervals (< 

day 14, days 14–21, 21–28, and > day 28) were used to account for changing effects over time, and 

neighboring windows with similar effects of genetic covariates as determined by Wald test were merged. 

Finally, other covariates (transmission intensity, region of sample origin, dose supervision, and fat intake) 

were included in the model if they improved model fit based on the likelihood ratio test. Multiplicity of 

infection was only available for 197 and 141 AL and ASAQ patients, respectively, and was excluded from 

further analysis. The final model was then used to estimate the adjusted hazard ratio for recrudescence in 

patients who carried parasites with resistant versus sensitive genotypes on day 0. The assumption of 

proportional hazards was tested separately for the individual covariates in the final multivariable model, 

and any violations were reported. 

In patients who had recurrent parasitemia on or before day 42, changes in pfcrt and pfmdr1 alleles 

between pre-treatment and post-treatment matched pairs of samples was compared by using McNemar’s 

test. Changes in genotype, rather than presence of a particular allele, were compared between matched 

pairs to ensure that differences reflected selection rather than underlying differences in allele frequencies 

among populations. The effect of markers present at the time of recurrence on median time to PCR-

adjusted re-infection (new infection) was investigated by using the Wilcoxon Mann-Whitney U test. 

Competing risk analysis
59

 was used to estimate cumulative incidence of PCR-adjusted re-infections with 

specific genotypes, where recrudescent and re-infections with other genotypes were treated as competing 

events. 

The number of molecular markers used to distinguish recrudescence from re-infection varied from one 

to three or more loci. The effect of the number of loci genotyped on outcome classification was 

investigated in a regression model of predictors of recrudescence within all recurrences. No effect of this 

variable was observed on the number of recrudescent infections identified among recurrences in 

univariable or multivariable analysis, it was not further investigated. 

RESULTS 

Individual patient and linked parasite genotype data from 31 studies were available (Supplemental 

Table 3). Data from 7,249 patients who were treated with AL (5,003) or ASAQ (2,246) were included in 

the analysis. Twenty two studies were published, representing 91% of all published clinical data on AL 

and ASAQ in which pfcrt or pfmdr1 genotypes were determined. Baseline characteristics for patients 

treated with AL or ASAQ are shown in Supplemental Table 4. 

Clinical efficacy of AL and ASAQ. 

The estimates of efficacy (defined as risk of PCR-adjusted recrudescence) of AL and ASAQ are 

shown in Table 2. Of the 5,003 AL patients, 4,763 were followed-up for at least one day and were 

included in the analysis. Similarly, of the 2,246 ASAQ patients, 2,099 were included. In total, 1,107 

patients had recurrent parasitemia after treatment with AL, of 188 (18%) were classified by PCR as 

having recrudescent infections. The corresponding figures for ASAQ were 484 patients had recurrent 

parasitemia and 58 (12%) were confirmed as having recrudescent infections. The overall clinical efficacy 

at day 42 was 94.8% (95% confidence interval [CI] = 94–95.5%) in patients treated with AL and 95.1% 

(95% CI = 92.3–96.7%) in patients treated with ASAQ (Table 2). The proportion of adequate clinical and 

parasitologic response of ASAQ was significantly higher for the fixed dose and co-blistered tablets 

(97.0%, 95% CI = 94.4–98.4%) compared with the loose formulation (93.0%, [95% CI = 89.2–95.6) (P = 

0.003). 



Baseline prevalence of genetic markers associated with resistance. 

The baseline prevalence of SNPs in pfcrt and pfmdr1 was determined, but not all SNPs were available 

for all isolates. The most frequently analyzed SNPs were position 76 in pfcrt determined for 3,640 

patients and position 86 in pfmdr1 for 3,580 patients, with the complete haplotype of positions 72–76 in 

pfcrt, pfmdr1 copy number, and SNPs at positions pfmdr1 184, 1034, 1042, and 1246 available in a subset 

of patients (Table 3). 

The prevalence of pfcrt and pfmdr1 alleles varied by region (Table 3). The pfcrt 76T allele (all in the 

SVMNT haplotype) was almost fixed at 96.4% (81/84) in isolates from Asia (Thailand) and Oceania 

(Papua New Guinea). In Africa, the only resistant haplotype observed was the CVIET allele. The 76T 

allele predominated: 67.6% (1,155/1,708) in East Africa and 73.3% (1,354/1,848) in West Africa (Table 

3). Amplification of pfmdr1 was seen in 50% (88/176) of isolates from Asia examined for this genotype, 

but only in 2.4% (16/659) of isolates from Africa. Pfmdr1 86Y was found in 29.2% (66/226) of isolates 

from Asia/Oceania; in contrast, the 86Y allele was present in 44.1% (896/2,033) of isolates from East 

Africa and 34.3% (453/1,321) of isolates from West Africa. 

The SNPs at positions 184 and 1246 showed similar patterns, with pfmdr1 Y184 and D1246 

predominating in all three regions (Table 3). Almost all isolates examined carried the pfmdr1 S1034 

(760/844) and N1042 (1,053/1,064). 

Parasite genotypes as risk factors for recrudescent infection. 

After controlling for age, baseline parasite density, and total lumefantrine dose (Table 1), the presence 

of parasites in the initial infection that carried pfmdr1 N86 (alone or a mixed infection with pfmdr1 86Y) 

was a significant risk factor for recrudescent infection occurring between days 14 and 28 after AL 

treatment (adjusted hazards ratio [AHR] = 4.74, 95% CI = 2.29–9.78, P < 0.001) (Table 4 and Figure 2A). 

Region of sample origin was not included as a covariate in the model because it violated the assumption 

of proportional hazards. The risk associated with presence of pfmdr1 N86 remained significant when 

excluding infections with multiple copies of pfmdr1 (AHR = 3.93, 95% CI = 1.90–8.94, P < 0.001). The 

region of sample origin interacted significantly with pfmdr1 N86, showing that the marker had a larger 

effect in Asia (AHR = 14.06, 95% CI = 4.52–43.74, P < 0.001) than in Africa (AHR = 3.72, 95% CI = 

1.77–7.79, P = 0.001). However, this interaction violated the proportional hazards assumption since there 

were so few samples in Africa that had multiple copies of pfmdr1, and this variable was excluded from 

the final model. 

The presence of more than one copy of pfmdr1 was a significant risk factor for recrudescence 

occurring between days 14 and 21 after AL treatment (AHR = 5.81, 95% CI = 2.38–14.21, P < 0.001) 

(Figure 2B). When the effect of region of origin was added to the model, patients with parasites carrying 

multiple copy numbers of pfmdr1 were associated with an increased risk of recrudescence before day 14 

(AHR = 83.56, 95% CI = 7.43–939.70, P < 0.001) as well as between days 14 and 21 (AHR = 18.54 (95% 

CI = 7.61–45.19, P < 0.001) (Table 4). The interaction of region of origin with pfmdr1 copy number could 

not be investigated because of insufficient multicopy samples from Africa in the model. 

When pfmdr1 N86 and pfmdr1 copy number were included in the same model, region of sample 

origin was no longer a significantly predictive covariate in the multivariable analysis or as an interaction 

term with either genotype. Both markers remained as significant predictors of recrudescent infection, 

between days 14 and 28 for pfmdr1 N86 (AHR = 5.98, 95% CI = 1.68–21.36, P = 0.006) and days 14 and 

21 for multiple copies of pfmdr1 (AHR = 6.52, 95% CI = 2.36–17.97, P < 001); Table 4) 

No association was observed between the pfmdr1 184, pfmdr1 1246, and pfcrt polymorphisms and 

recrudescent infections after AL treatment. The risk for parasites with the pfmdr1 N86 + D1246 haplotype 

is not reported here because it represents a subset of the pfmdr1 N86 sample set (of the samples genotyped 

for both SNPs, all but 17 samples with pfmdr1 N86 also had D1246). For patients treated with ASAQ, 

none of the analyzed pfcrt or pfmdr1 parasite genotypes were significant risk factors for recrudescent 

infections in the multivariable analysis. 



Post-treatment selection of genetic markers associated with resistance. 

To examine changes in the genotypes of parasites after drug treatment, we compared the prevalence of 

pfmdr1 and pfcrt alleles in paired isolates from the initial and the recurrent parasites in the subset of 

patients in whom parasites recurred during the 42 day follow-up period. Post-treatment changes among 

specific genotypes are shown in Table 5 for all recurrent infections. Significant selection of pfcrt K76, 

pfmdr1 N86 occurred in recrudescent and re-infecting parasites after AL treatment. Selection of pfmdr1 

184F and D1246 alleles was also observed in the recurrent parasites and pfmdr1 D1246 in those that 

reinfected patients after treatment. Selection of single or multiple copies of pfmdr1 was not observed in 

any of the groups (Table 5). Pfmdr1 86Y and 1246Y were significantly selected in recurrent and re-

infections after treatment with ASAQ (Table 5). 

Median time to re-infection. 

The genotype of parasites at the time of re-infection provides another metric of their susceptibility to a 

drug. This analysis indicated that in patients treated with AL, re-infecting parasites carrying pfmdr1 N86, 

pfmdr1 D1246, or pfcrt K76 alleles appeared earlier than those carrying pfmdr1 86Y, pfmdr1 1246Y, or 

pfcrt 76T (Figure 3A). Correspondingly, in patients treated with AL, parasites carrying pfmdr1 N86 had a 

median time to re-infection of 28 days (interquartile range = 21–35 days) compared with 35 days 

(interquartile range = 28–42 days) for those with pfmdr1 86Y (P < 0.001). Similar differences in the time 

to re-infection were observed for patients infected with parasites that carried the pfmdr1 184F (P = 0.008) 

or pfcrt K76 alleles (P = 0.001) compared with pfmdr1 Y184 or pfcrt 76T. 

In contrast, in patients treated with ASAQ, parasites carrying pfmdr1 86Y, pfmdr1 1246Y, or pfcrt 

76T appeared earlier after treatment than those carrying pfmdr1 N86, pfmdr1 D1246 or pfcrt K76 (Figure 

3B). Parasites with pfcrt 76T had a median reinfection day of 28 (interquartile range = 21–35) compared 

with day 37.5 (interquartile range = 28–42) for those carrying K76 (P = 0.053) and those with pfmdr1 

1246Y re-infected on a median day of 21 (interquartile range = 21–28) compared with day 28 

(interquartile range = 21–35) for those with D1246 (P = 0.001). 

DISCUSSION 

This pooled analysis of data from 31 clinical studies shows clearly that the genotypes of infecting 

parasites influence the outcome of AL treatment. Patients infected with parasites that carried the pfmdr1 

N86 allele or increased pfmdr1 copy number were at significantly greater risk of treatment failure than 

those whose parasites carried the 86Y allele or a single copy of pfmdr1. Analysis of the clinical outcomes 

after treatment with ASAQ did not link a particular genotype with treatment failure in this smaller data 

set. However, it did show clear evidence of selection of particular parasite genotypes. Our findings are 

consistent with those of previous molecular studies in which changes in the prevalence of particular 

alleles of pfcrt or pfmdr1 have been documented in response to introduction or increased use of 

lumefantrine 
25–35

 or amodiaquine.
15,28,40–51

 

Our observation that parasites with the pfmdr1 N86, D1246, and pfcrt K76 alleles re-infected patients 

earlier after AL treatment, and parasites carrying the pfmdr1 86Y, 1246Y, and pfcrt 76T alleles re-

infected patients earlier after ASAQ is also congruent with the molecular studies. These differences 

suggest that parasites with these genotypes can withstand higher drug concentrations compared with 

parasites that carry the alternative alleles. Recently, Malmberg and others
33

 demonstrated this effect 

quantitatively. After AL treatment, parasites with the pfmdr1 N86/184F/D1246 haplotype were able to re-

infect patients whose lumefantrine blood concentrations were 15-fold higher than was the case for 

parasites carrying the 86Y/Y184/1246Y haplotype,
33

 providing a potential pharmacologic explanation for 

the molecular findings. Together, these observations suggest that monitoring shifts to earlier time of re-

infection could provide a relatively simple warning of decreasing susceptibility to these drugs, especially 

if combined with timed measurement of drug concentrations in patients’ blood. 

In Southeast Asia, parasites with increased pfmdr1 copy number are common in areas where 

mefloquine has been intensively deployed,
36

 and almost half of the samples in our data set from that 



region had at least two copies of the gene. Increased pfmdr1 copy number was rarely observed in our 

large sample of isolates from Africa, populations that have had little exposure to mefloquine. 

Lumefantrine has a shorter half-life in patients than mefloquine,
60

 and may not exert an equivalently 

strong selection for copy number increase. However, in areas where mefloquine is being introduced, close 

attention to pfmdr1 copy number is clearly warranted. A recent report of parasites in Ghana with 

increased pfmdr1 copy number underscores the importance of including this parameter in molecular 

surveillance.
61

 

This study supported the conclusion that parasites with increased copy number of pfmdr1 are also less 

sensitive to lumefantrine.
37–40

 In Southeast Asia, the amplified alleles almost always carried the N86 allele 

of pfmdr1.
34,36,62

 However, this was not the case in the few parasites from Africa in our data set that did 

have an increased copy number
31

 so either of the N86Y alleles of pfmdr1 can apparently be amplified. It 

is also important to note that increased copy number and the presence of the pfmdr1 N86 allele were 

independent risk factors for treatment failure in our analysis. 

The evidence of strong selection of particular alleles by both drugs in recurrent parasites, coupled with 

our observation that particular parasite genotypes increase risk of treatment failure, demonstrates that 

tracking these molecular markers can signal early decreases in susceptibility to lumefantrine or 

amodiaquine. Both alleles of pfmdr1 N86Y, Y184F, and D1246Y are common in P. falciparum 

populations I Africa, and pfcrt K76 has increased in prevalence in recent years. Thus, changes in the 

prevalence of these alleles can be a sensitive indicator of selection of parasite populations by AL and 

ASAQ. In turn, decreasing efficacy of these partner drugs exposes the artemether or artesunate component 

of the ACT to selective pressure and could facilitate emergence of new foci of resistance to artemisinin, as 

observed in the Mekong region. The recent identification of a marker correlated with slow response to 

artemisinin,
63

 will also enable molecular assessment of this trend. 

Application of these molecular tools is increasingly feasible in the context of clinical trials and in 

community surveys of populations where AL or ASAQ are heavily used. These approaches can offer cost-

effective methods that detect evidence of declines in parasite susceptibility far earlier than before, 

enabling detailed studies of clinical responses to the drugs in areas of concern. This two-stage approach 

can provide an opportunity for policy makers to manage emerging threats of resistance before clinical 

failure of a drug is manifest and preserve the useful therapeutic life of these valuable antimalarial drugs 

for as long as possible. 

Finally, these results suggest that AL and ASAQ interact with the proteins encoded by pfcrt and 

pfmdr1, but the two drugs select alternative alleles. Two recent publications have also demonstrated that 

piperaquine exerts selection pressure on these genes in the same direction as amodiaquine, suggesting that 

the newer ACT, dihydroartemisinin-piperaquine could also function as a counterweight to 

lumefantrine.
64,65

 This opposing selection of parasite genotypes by the partner drugs could influence the 

choice of an ACT in regions with different patterns of pfcrt and pfmdr1 polymorphisms. For example, if a 

particular allele is rapidly increasing under intensive use of AL, introduction of AQ or piperaquine might 

be introduced to counteract that trend. Concurrent use of two ACTs that exert opposing selective 

pressures on recurrent parasites could provide a counterbalance and prevent strong directional selection in 

pfcrt and pfmdr1, maintaining the overall efficacy of AL and ASAQ for a long period. Despite logistical 

challenges, the simultaneous use of multiple first line therapies is supported by mathematical models,
66–68

 

and concurrent availability of AL and ASAQ, as implemented in some countries in West Africa
4
 may 

provide a practical means to test this strategy directly. 
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FIGURE 1. Patient flow chart for study of parasite risk factors that affect treatment outcomes for Plasmodium falciparum 

malaria after treatment with artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ). 

FIGURE 2. Polymerase chain reaction–adjusted efficacy as assessed by Kaplan-Meier survival estimates for artemether-

lumefantrine (AL) by Plasmodium falciparum multidrug resistance 1 (pfmdr1) genotype of initial parasites. Dotted line 

indicates World Health Organization–recommended 90% efficacy cutoff value for antimalarial drugs. Clinical response of 

patients with parasites that carry A, pfmdr1 86Y (blue) versus 86N or N/Y (red); n = 2,543 patients at risk and B, pfmdr1 copy 

number > 1 (yellow) versus single copy (green); n = 808 patients. This figure appears in color at www.ajtmh.org. 



FIGURE 3. A, Cumulative (left panels) and relative (right panels) risks of polymerase chain reaction (PCR)–adjusted reinfection 

for baseline Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 

(pfmdr1) genotypes after artemether-lumefantrine treatment, in which recrudescent and re-infections with other genotypes were 

treated as competing events. B, Cumulative (left panels) and relative (right panels) risks of PCR-adjusted re-infection for 

baseline pfcrt and pfmdr1 genotypes after artesunate-amodiaquine treatment, in which recrudescent and re-infections with other 

genotypes were treated as competing events. This figure appears in color at www.ajtmh.org. 

TABLE 1 

Multivariable risk factors for PCR-adjusted recrudescent infections for persons treated with artemether-lumefantrine and 

artesunate-amodiaquine at day 42* 

Treatment and variable Adjusted HR [95% CI] P 

AL (n = 14,679; 371 recrudescences) 

 Age category:  12 years (reference) 

  < 1 1.55 (0.86–2.78) 0.150 

  1 to < 5 2.38 (1.51–3.75) < 0.001 

  5 to < 12 1.39 (0.86–2.23) 0.160 

 Enrollment parasite density (log scale) 1.13 (1.05–1.23) 0.002 

 Lumefantrine dose (mg/kg) 1.00 (0.99–1.01) 0.860 

ASAQ (n = 7,652; 220 recrudescences) 

 Age category:  12 years (reference) 

  < 1 2.20 (1.01–4.78) 0.047 

  1 to < 5 2.27 (1.13–4.55) 0.021 

  5 to < 12 1.51 (0.72–3.17) 0.140 

 Enrollment parasite density (log scale) 1.50 (1.16–1.93) 0.002 

 Amodiaquine dose (mg/kg) 0.92 (0.82–1.04) 0.180 

 Drug formulation: fixed dose (reference) 

  Co-blistered 0.98 (0.41–2.32) 0.960 

  Loose 2.94 (1.58–5.48) 0.001 

* Risk factors were selected based upon previous analysis of the same data set (“The effect of dosing strategies on the 

antimalarial efficacy of artemether-lumefantrine: a pooled analysis of individual patient data, by the WWARN AL Study 

Group” presubmission approved at PLoS Medicine, March 28, 2014 and “The Effect of Dosing Strategies on the Therapeutic 

Efficacy of Artesunate Amodiaquine for uncomplicated malaria: A Pooled Analysis of Individual Patient Data” presubmission 

planned for PLoS Medicine before April 15, 2014). Values in bold are statistically significant. PCR = polymerase chain 

reaction; HR = hazards ratio; CI = confidence interval; AL = artemether-lumefantrine; ASAQ = artesunate-amodiaquine. 

TABLE 2 

PCR-adjusted adequate clinical and parasitologic response for patients treated with of artemether-lumefantrine and artesunate-

amodiaquine after 42 days of follow-up* 

Variable AL ASAQ fixed dose and co-blistered ASAQ loose 
No. at risk 4,763 1,113 986 
ACPR by group, % (95% CI) 

Age category, years 

 < 1 96.7 (92.7–98.5) 100 85.2 (70.5–93.0) 

 1 to < 5 93.6 (92.0–94.8) 96.4 (93.2–98.1) 93.8 (90.0–96.2) 

 5–12 96.3 (94.5–97.5) 98.8 (91.6–99.8) 99 (96.1–99.8) 

  12 95.2 (93.8–96.3) – – 

Region 

 Asia/Oceania 95.2 (93.8–96.2) – – 
 East Africa 93.8 (92.4–95.0) 100† 91.2 (88.0–94.7) 
 West Africa 96.2 (94.6–97.3) 96.9 (94.2–98.3) 99.2 (96.8–99.8)† 

Overall 94.8 (94.0–95.5) 97.0 (94.4–98.4) 93.0 (89.2–95.6) 

* PCR = polymerase chain reaction; ACPR = adequate clinical and parasitologic response; AL = artemether-lumefantrine; 

ASAQ = artesunate –amodiaquine; CI = confidence interval. 

† Followed-up to day 28. 

 



TABLE 3 

Baseline (pre-treatment) prevalence of genetic markers associated with drug resistance* 

Marker Asia/Oceania East Africa West Africa 
pfcrt 76 

 Sample size 84 1,708 1,848 
  K 3 (4) 553 (32) 494 (27) 
  K/T 2 (2) 125 (7) 249 (13) 
  T 79 (94) 1,030 (60) 1105 (60) 
pfcrt 72–76 

 Sample size 84 155 84 
  CVMNK 3 (4) 37 (24) 14 (17) 
  CVIET 0 117 (75) 53 (63) 
  SVMNT 79 (94) 0 0 
  Mixed 2 (2) 1 (1) 17 (20) 
pfmdr1 86 

 Sample size 226 2,033 1,321 
  N 160 (71) 759 (37) 678 (51) 
  N/Y 0 378 (19) 190 (14) 
  Y 66 (29) 896 (44) 453 (34) 
pfmdr1 184 

 Sample size 228 1,275 686 
  Y 183 (80) 803 (63) 287 (42) 
  Y/F 8 (4) 130 (10) 77 (11) 
  F 37 (16) 342 (27) 322 (47) 
 Sample size 77 1,017 687 
  D 67 (87) 454 (45) 526 (77) 
  D/Y 10 (13) 309 (30) 86 (13) 
  Y 0 254 (25) 75 (11) 
pfmdr1 86 + 1246 

 Sample size 69 1,000 685 
  N D 12 (17) 129 (13) 263 (38) 
  N Y 0 9 (1) 2 (0) 
  Y D 50 (72) 248 (25) 199 (29) 
  Y Y 0 220 (22) 71 (10) 
  Mixed 7 (10) 394 (39) 150 (22) 
pfmdr1 copy number 

 Sample size 176 659 0 
  1 88 (50) 642 (98) 0 
  2 57 (32) 16 (2) 0 
  > 2 31 (18) 1 (0) 0 

* Values are no. (%). pfcrt = Plasmodium falciparum chloroquine resistance transporter gene; pfmdr1 = P. falciparum 

multidrug resistance 1 (pfmdr1) gene. 

 

 

 

 

 

 

 

 



TABLE 4 

Multivariable risk factors for PCR-adjusted recrudescent infections of persons treated with artemether-lumefantrine on day 42* 

Marker and variable Adjusted hazard ratio (95% CI) P 
pfmdr1 86 (n = 2,543; 135 recrudescent infections)† 

 pfmdr1 N86 or N/Y 

  In recrudescence up to day 14 0.79 (0.25–2.54) 0.694 
  In recrudescence between days 14 and 28 4.74 (2.29–9.78) < 0.001 
  In recrudescence after day 28 0.84 (0.43–1.66) 0.624 
 Enrollment parasite density (loge – scale) 1.13 (0.99–1.29) 0.056 
 Age category (reference < 1 year) 

  1 to < 5 1.05 (0.40–2.75) 0.922 
  5 to < 12 0.85 (0.30–2.38) 0.752 
   12 0.77 (0.25–2.36) 0.647 
 Lumefantrine dose (mg/kg) 0.99 (0.98–1.00) 0.109 
pfmdr1 copy number (n = 808; 73 recrudescent infections) 

 pfmdr1 copy number > 1‡ 

  In recrudescence up to day 14 83.56 (7.43–939.70) < 0.001 
  In recrudescence between days 14 and 21 18.54 (7.61–45.19) < 0.001 
  In recrudescence after day 21 0.61 (0.25–1.51) 0.286 
 Region (reference Africa) 

  Asia/Oceania 5.09 (1.06–24.38) 0.042 
 Enrollment parasite density (loge – scale) 1.00 (0.85–1.18) 0.978 
 Age category (reference < 5 years) 

  5 to < 12 0.62 (0.22–1.77) 0.368 
   12 0.56 (0.16–1.93) 0.359 
 Lumefantrine dose (mg/kg) 0.98 (0.96–1.00) 0.113 
pfmdr1 86 and copy number (n = 719; 59 recrudescent infections)§ 

 pfmdr1 N86 or N/Y 

  In recrudescence up to day 14 1.00 (0.07–13.64) 0.997 
  In recrudescence between days 14 and 28 5.98 (1.68–21.36) 0.006 
  In recrudescence after day 28 0.51 (0.18–1.47) 0.21 
 pfmdr1 copy number > 1 

  In recrudescence up to day 14 2.17 (0.16–29.77) 0.561 
  In recrudescence between days 14 and 21 6.52 (2.36–17.97) < 0.001 
  In recrudescence after day 21 0.94 (0.31–2.82) 0.916 
 Enrollment parasite density (loge – scale) 1.08 (0.92–1.28) 0.348 
 Age category (reference < 5 years) 

  5 to < 12 1.46 (0.59–3.57) 0.413 
   12 0.79 (0.27–2.33) 0.663 
 Lumefantrine dose (mg/kg) 0.98 (0.95–1.00) 0.05 

* Values in bold are statistically significant. PCR = polymerase chain reaction; CI = confidence interval; pfmdr1 = P. 

falciparum multidrug resistance 1 (pfmdr1) gene. 

† Region not included as a covariate or interaction term with pfmdr1 86 genotype because proportional hazards 

assumption was not met. 

‡ Sparse data for pfmdr1 copy number in Africa prevented the inclusion of region as an interaction term. 

§ Region as a covariate and region-genotype interaction terms did not have statistically significant effects in this 

model. 

 

 

 

 

 



TABLE 5 

Selection of pfcrt and pfmdr1 genotypes after treatment with artemether-lumefantrine and artesunate-amodiaquine* 

Marker Genotype Recurrence Recrudescence Re-infection 
AL ASAQ AL ASAQ AL ASAQ 

pfcrt 76 K  T† 16% (89/571) 10% (25/237) 5% (4/73) 20% (7/35) 17% (82/493) 9% (17/196) 

T  K 30% (171/571) 8% (18/237) 25% (18/73) 11% (4/35) 31% (152/493) 7% (14/196) 
No change 54% (311/571) 82% (194/237) 70% (51/73) 69% (24/35) 53% (259/493) 84% (165/196) 

 < 0.001 0.286 0.004 (exact) 0.366 < 0.001 0.590 

pfmdr1 86 N  Y 13% (95/712) 27% (92/341) 10% (10/101) 18% (5/28) 14% (85/609) 28% (87/308) 

Y  N 40% (286/712) 16% (54/341) 31% (31/101) 14% (4/28) 42% (255/609) 16% (49/308) 
No change 46% (331/712) 57% (195/341) 59% (60/101) 68% (19/28) 44% (269/609) 56% (172/308) 

 < 0.001 0.002 0.001 0.739 < 0.001 0.001 
pfmdr1 184 Y F 24% (74/311) 12% (37/303) 20% (14/69) 12% (3/25) 25% (60/242) 12% (34/273) 

F  Y 16% (51/ 311) 17% (50/303) 14% (10/69) 4% (1/25) 17% (41/242) 18% (49/273) 
No change 60% (186/311) 71% (216/303) 65% (45/69) 84% (21/25) 58% (141/242) 70% (190/273) 

 0.040 0.163 0.414 0.625 0.059 0.100 

pfmdr1 1246 D  Y 14% (38/273) 32% (102/317) 11% (5/44) 39% (11/28) 15% (33/227) 32% (90/284) 

Y  D 32% (86/273) 19% (60/317) 30% (13/44) 14% (4/28) 32% (73/227) 20% (56/284) 
No change 54% (149/273) 49% (155/317) 59% (26/44) 46% (13/28) 53% (121/227) 48% (138/284) 

 < 0.001 0.001 0.059 0.119 < 0.001 0.005 

pfmdr1 copy 

number 
1  2 or more 1% (2/269) – 4% (2/53) – 0 – 

2 or more  1 1% (3/269) – 2% (1/53) – 1% (2/216) – 
No change 98% (264/269) – 94% (50/53) – 99% (214/216) – 

 1.000 (exact)  1.000 (exact)  0.500 (exact)  

* Values in bold indicate statistically significant selection (P < 0.05) by using McNemar’s paired test. Those marked exact were 

tested by using the exact distribution for small sample sizes. A small number of recurrent infections (4 for AL and 6 for ASAQ) 

were not polymerase chain reaction–adjusted and were excluded from the analysis of recrudescent and re-infections. pfcrt = 

Plasmodium falciparum chloroquine resistance transporter gene; pfmdr1 = P. falciparum multidrug resistance 1 (pfmdr1) gene; AL 

= artemether-lumefantrine; ASAQ = artesunate –amodiaquine. 

† Each category includes all changes from one allele to another. For example, K  T includes K  T, K  K/T, and K/T  T 

changes. 

 

 

 

 

 

 

 

 

 

 

 

 



SUPPLEMENTAL TABLE 1 

Univariable and multivariable risk factors for PCR-adjusted recrudescence at day 42 (n = 14,679 and 371 recrudescences) for patients treated with artemether-lumefantrine* 

Variable No. Univariate analysis Multivariate analysis Population attributable risk† 

Crude HR (95% CI) P Adjusted HR (95% CI) P Frequency PAR 

Age (years) 14,679 0.96 (0.94–0.98) < 0.001 – – – – 

Weight (kg) 14,769 0.98 (0.97–0.99) < 0.001 – – – – 

Lumefantrine dose (mg/kg) 14,769 1 (0.99–1) 0.550 1 (0.99–1.01) 0.860 28.13% 2.26% 

Clinical variables 

 Baseline parasitemia (log scale) 14,769 1.15 (1.07–1.25) < 0.001 1.13 (1.05–1.23) 0.002 9.12% 4.15%‡ 

 Baseline parasitemia > 100,000/L 14,769 1.55 (1.15–2.09) 0.004 – – – – 

 Baseline gametocytemia 7,659 1.55 (1.04–2.32) 0.031 – – – – 

Age category 14,679       

 12 years (reference)        

 < 1  1.74 (1.01–3) 0.045 1.55 (0.86–2.78) 0.150 9.01% 5.68% 

 1 to < 5  2.69 (1.73–4.17) < 0.001 2.38 (1.51–3.75) < 0.001 45.72% 41.24%‡ 

 5 to <12  1.51 (0.95–2.38) 0.079 1.39 (0.86–2.23) 0.160 20.63% 9.21% 

Weight category 14,769       

  35 kg (reference)        

 5 to < 15  2.47 (1.58–3.88) < 0.001 – – – – 

 15 to < 25  1.92 (1.21–3.04) 0.005 – – – – 

 25 to < 35  1.39 (0.75–2.56) 0.300 – – – – 

Supervision 14,396       

 Full (reference)    – – – – 

 Partial  0.92 (0.51–1.67) 0.790 – – – – 

 Unsupervised  1.66 (0.56–4.93) 0.370 – – – – 

Co-administration with fat 7,180   – – – – 

 With fatty meal (reference)        

 Without fatty meal  0.91 (0.32–2.61) 0.860 – – – – 

* Values in bold are statistically significant. PCR = polymerase chain reaction; HR = hazards ratio; CI = confidence interval; PAR population attributable risk. 

† Overall PAR for model: 52.9% calculated as calculated as . 

‡ Cumulative PAR for hyper-parasitemia and age 1 to < 5 years: 43.7. 

 

 

 



SUPPLEMENTAL TABLE 2 

Univariable and multivariable risk factors for PCR-adjusted recrudescenceat day 42 (n = 7,652 and 220 recrudescences for final model) for patients treated with artesunate-

amodiaquine* 

Variable No. (no.)† Univariable analysis Multivariable analysis PAR‡ 

Crude HR (95% CI) P Adjusted HR (95% CI) P Frequency PAR 

Amodiaquine dose (mg/kg) (5 units) 7,652 (220) 0.90 (0.8–1.01) 0.081 0.92 (0.82–1.04) 0.180 – – 

Clinical variables 

 Parasitemia (log scale) 8,224 (223) 1.53 (1.19–1.97) < 0.001 1.5 (1.16–1.93) 0.002 10.7% 5.5% 

 Pfmicl > 100,000/L 8,224 (223) 1.54 (1.03–2.30) 0.034 – – – – 

 Baseline fever (temperature > 37.5C) 7,847 (212) 0.87 (0.64–1.20) 0.400 – – – – 

 Baseline hemoglobin level 5,708 (193) 0.93 (0.86–1.00) 0.054 – – – – 

 Baseline anemia (hemoglobin level < 10) 5,708 (193) 1.37 (1.00–1.89) 0.050 – – – – 

 Baseline gametocyte level 4,258 (91) 1.41 (0.76–2.59) 0.270 – – – – 

Species at enrollment 

 Pure P. falciparum infection (reference) 8,189 (220)       

 Mixed infections 35 (3) 1.28 (0.37–4.41) 0.700 – – – – 

Sex 

 F (reference) 3,755(106)       

 M 4,308 (102) 0.87 (0.66–1.15) 0.340 – – – – 

Age category 

 12 yrs (reference) 1,289 (14)       

 < 1 693 (32) 3.52 (1.65–7.5) 0.001 2.2 [1.01–4.78] 0.047 8.4% 11.1% 

 1 to < 5 4,816 (158) 3.48 (1.78–6.82) < 0.001 2.27 [1.13–4.55] 0.021 58.5% 46.9% 

 5 to < 12 1,426 (19) 1.72 (0.84–3.54) 0.140 1.51 [0.72–3.17] 0.280 – – 

Drug formulation 

 FDC (reference) 4,212 (78)       

 nFDC co-blistered 900 (11) 1.19 (0.51–2.78) 0.700 0.98 [0.41–2.32] 0.960 – – 

 nFDC loose 3,112 (134) 3.00 (1.64–5.50) < 0.001 2.94 [1.58–5.48] 0.001 36.3% 41.9% 

Treatment supervision 8,334       

 Fully (reference) 6,287 (74)       

 Partial  1,937(149) 2.08 (0.79–5.46) 0.140 – – – – 

* Values in bold are statistically significant. PCR = polymerase chain reaction; HR = hazards ratio; CI = confidence interval; FDC = fixed-dose combination. 

† No. = number of patients (No.); no. = number of PCR-confirmed treatment failures. 

‡ Overall PAR for the model accounted by significant variables: 74.0% calculated as . For PAR calculation, parasitemia was categorized at 100,000/L. 

Variance of the random effect = 0.914. Anemia was not kept for multivariable analysis because of missing values. The coefficients for other covariates remain unaffected with or 

without anemia in the model. The assumption of proportional hazard held true for overall final multivariable model globally (P = 0.584) and individually for each of the covariates (P > 

0.05). 

 



SUPPLEMENTAL TABLE 3 

Summary of studies included in the analysis* 

Region, country Reference Study year(s) Treatment (no.) Transmission zone (no.) 

AL ASAQ High Moderate Low 

East Africa 

 Ethiopia 67 2006 34    34 

 Ethiopia 68 2008–2009 348    348 

 Kenya Unpublished 2007-2008  54   54 

 Kenya 69 2005 241  241   

 Kenya 15 2007  103  103  

 Madagascar 70 2006–2007  17 1 15 1 

 Sudan 31 2006 91    91 

 Sudan 16 2003  80   80 

 Tanzania 71 2007–2008 359  359   

 Tanzania 11 2007 244  244   

 Tanzania 72 2010 108   108  

 Tanzania (Zanzibar) 47 2002–2003  208  208  

 Tanzania (Zanzibar) 27 2002–2003 200   200  

 Tanzania (Zanzibar) 25 2002–2003 †   †  

 Tanzania 73 2004 50  50   

 Uganda 74 2004–2007 149 149  298  

 Uganda 26 2005 204  204   

 Uganda 46 2005  204 204   

 Uganda Unpublished 2007–2008 112  112   

West Africa 

 Benin Unpublished 2007 96 95  191  

 Burkina Faso 30 2006 188   188  

 Burkina Faso Unpublished 2004–2006  890 890   

 Burkina Faso 75 2005 261   261  

 Guinea-Bissau 76 2006–2008 191   191  

 Liberia 77 2009 150 149 299   

 Mali  2009 337  188 77 72 

 Mali 49 2002–2004  252 252   

 Nigeria 78 2007–2008 47 45 92   

Oceania 

 Papua New Guinea 79 2005–2007 176   176  

Asia 

 Thailand 34 1995–2002 1,417    1,417 

 Thailand 29 1995–2002 †    † 

Total   5,003 2,246 3,136 2,016 2,097 

* AL = artemether-lumefantrine; ASAQ = artesunate-amodiaquine. 



† Samples overlap with previous study. 

SUPPLEMENTAL TABLE 4 

Baseline characteristics of patients treated with artemether-lumefantrine or artesunate-amodiaquine* 

Treatment, variable Asia/Oceania East Africa West Africa Overall 

AL 

 No. (%) 1,593 (31.9) 2,140 (42.8) 1,270 (25.3) 5,003 

 Study period 1995–2007 2002–2010 2003–2009 1995–2010 

 Follow-up (days) 

  28 19.5% 32.6% 50.8% 33.0% 

  42 56.2% 39.3% 49.2% 47.2% 

  43–63 24.4% 28.0%  19.7% 

 Median age (IQR, range) (years) 18 (10–30, 0.8–70) 3 (2–5, 0.3–81) 4 (3–7, 0.3–61) 5 (3–14, 0.3–81) 

  < 1 0.1% 7.7% 3.4% 4.2% 

  1 to < 5 12.1% 59.9% 47.7% 41.6% 

  5–11 17.4% 18.6% 38.3% 23.2% 

    12 70.5% 13.6% 9.7% 30.7% 

  Missing 0.0% 0.3% 0.9% 0.4% 

 Baseline parasites/µL geometric mean (95% CI) 5,371 (4,833–5,969) 14,094 (13,015–15,262) 25,066 (23,411–26,838) 12,086 (11,459–12,748) 

 Supervision 

  Full 64.6% 35.8% 62.2% 51.7% 

  Partial 11.0% 44.4% 34.1% 31.2% 

  Unsupervised 0.0% 19.8% 0.0% 8.5% 

  Not stated/unknown 24.4% 0.0% 3.7% 8.7% 

 Co-administration 

  With food 11.0% 20.7% 26.9% 19.2% 

  Advised to consume fatty food 0.0% 46.0% 0.0% 19.7% 

  None 0.0% 9.5% 0.0% 4.1% 

  Not stated 89.0% 23.7% 73.1% 57.0% 

ASAQ 

 No. (%)  815 (36.3%) 1,431 (63.7%) 2,246 

 Study period  2002–2008 2002–2009 2002–2009 

 Follow-up, days 

  28  74.5% 82.9% 79.9% 

  42  25.5% 17.1% 20.1% 

 Median age (IQR, range) (years)  3 (2–5, 0.4–60) 3 (2–4, 0.4–38) 3 (2–4, 0.4–60) 

  < 1  8.3% 7.7% 7.9% 

  1 to < 5  65.3% 78.6% 73.8% 

  5–11  19.1% 12.6% 15.0% 

   12  7.0% 1.0% 3.2% 

  Missing  0.2% 0.0% 0.1% 



 Baseline parasites/µL geometric mean (95% CI)  18,412 (16,480–20,569) 15,661 (14,593–16,806) 16,608 (15,635–17,642) 

 Formulation 

  Fixed dose  3.2% 48.1% 31.8% 

  Non-fixed dose  94.7% 51.9% 67.4% 

 Supervision 

  Full  63.8% 62.2% 62.8% 

  Partial   17.1% 10.9% 

  Not stated/unknown  36.2% 20.8% 26.4% 

* AL = artemether-lumefantrine; IQR = interquartile range; CI, confidence interval; ASAQ = artesunate-amodiaquine. 
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